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Abstract i

Abstract

This thesis investigates the use of Computational Intelligence techniques in
the context of a computer game. Such techniques include arti�cial neu-
ral networks, genetic algorithms and statistical techniques such as bagging,
boosting and the cross entropy method. Our aim is to create an AI which
exhibits intelligence; currently, intelligence is often equated with adaptation
or learning. In the context of computer games, game players are often frus-
trated by the lack of adaptation in the computer games. Thus in providing
adaptation in a computer game, we are enabling the AI to exhibit more intel-
ligence so that the game player will have enhanced enjoyment from playing
the game. The problem we address is to train an arti�cial intelligence to
ride a bike in a motocross game as fast as possible. Thus we are attempting
to optimise the parameters of our techniques to achieve good performance
at solving this particular problem and we evaluate di�erent techniques to
change these parameters and control the bikes.

Thus we experiment with several di�erent types of arti�cial neural
network and show that the multilayered perceptron (MLP) trained by the
backpropagation algorithm is the most successful and is able to compete
against a good human player. Other architectures of arti�cial neural networks
are very much less successful with this problem. We also show little success
with ensemble methods such as bagging and boosting.

We also show that the parameters of the multilayered perceptron can
be optimised using genetic algorithms but, although the subsequent MLP's
�nd novel solutions not found by the human player, these solutions tend to be
less e�ective than those found by backpropagation when we take into account
comparable training times. With longer training times, the genetic algorithm
solutions can be as e�ective as the backpropagation-trained networks.

Finally we show that the technique of cross entropy is a very good
optimiser of these parameters and we also develop a genetic algorithm variant
suggested by reinforcement learning.
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Chapter 1

Introduction

In this introductory chapter we give a brief introduction to the subject of our
research. Then we discuss the structure and outline of this thesis. Finally
we summarise the main research contributions of this thesis.

1.1 Video Games and Arti�cial Intelligence

Video games o�er a good environment to experiment with data mining and
advanced arti�cial intelligence techniques. Thanks to complex simulated
physics (we will use the term �physics simulation� in the remainder of the
thesis) and 3D graphics, current video games o�er very rich environments
with complex problems to solve.

The environments o�ered by video games are also much safer than
real-life environments for experiments in AI. There are normally no serious
consequences, like physical damage or injury, if an experiment goes wrong,
because the environments used are virtual.

Video games can also strongly bene�t from good AI; good AI can enrich
the player experience by making him/her feel he/she plays with or against
intelligent characters and this can add content to the game.

There is also a need in the research community for common platforms in
order to evaluate and compare techniques and algorithms, and to test those
techniques and algorithms on the same common problems. This has been
discussed during various conferences at which papers ([Chaperot and Fyfe
2005],[Chaperot and Fyfe 2006b],[Chaperot and Fyfe 2006a] and [Chaperot
and Fyfe 2007]) were presented.
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1.2 Traditional versus Advanced Arti�cial In-

telligence

There are two kinds of Arti�cial Intelligence (AI) that can be used in video
games:

• Traditional AI, also called conventional, logical or symbolic AI.
This is the kind of AI traditionally used in the game industry
[Rabin 2008][DeLoura et al. 2008][Champandard 2009][GameDevAI
2009][Jimenez 2009]. The game developer fully describes the behaviour
of the non-player characters (NPC) with a set of �if, then , else� state-
ments or a �nite state machine (FSM), using a programming language.
A FSM is a model of behaviour composed of a �nite number of states,
transitions between those states, and actions. The main advantage of
such techniques is that one can look inside the technique and deter-
mine on what basis a decision has been made. The main disadvantage
is that the AI programmer tends to have to identify all situations which
are likely to arise in use and program some response to such situations
in advance. This has led to the development of techniques which can
adapt while in use.

• Computational Intelligence (CI), also called Advanced AI, Dis-
tributed AI or non-symbolic AI. The game developer does not directly
describe the behaviour of NPC's; instead he creates structures and
algorithms that can then learn, adapt or evolve from examples or ex-
perience. This kind of AI encompasses techniques like

� Genetic Algorithms (GA): these techniques are based on the view
of evolution as a problem solver i.e. all living things on earth today
are here because their ancestors solved the twin problems of how
to live to maturity and how to �nd a mate (for sexual species).

� Arti�cial Neural Networks (ANN) : these techniques try to emu-
late the success of human brains in making sense of the environ-
ment in which we live. There are a great many di�erent architec-
tures of arti�cial neural networks but the most commonly used is
the multilayered perceptron which we use extensively throughout
this thesis.

� Arti�cial Immune Systems: provide another means of adaptation
or learning based on the fact that the immune system adapts
to antigens by providing antibodies which attack optimally the
antigens.
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� Probabilistic modelling: di�erent from the above techniques in
that it is not based on biological models, these techniques are
often known as machine learning. However many researchers use
both these techniques and some of the above techniques to tackle
a single problem.

� Fuzzy Logic/sets: Crisp sets are binary objects: each element
is either within or outwith a set but with fuzzy sets we allow
partial membership of a set. Fuzzy logic manipulates this partial
membership in order to provide solutions to human-type problems.

These examples of Computational Intelligence are not exhaustive since
new techniques such as Swarm Intelligence are being created continu-
ously and are being added to the set of techniques known collectively
as Computational Intelligence.

1.3 Structure of the thesis

Chapter 2 reviews some of the existing computer games in terms of:

• their relation to arti�cial intelligence.

• the physics model which they use.

We consider that these are two major aspects of computer games and we
introduce our own computer game, Motocross The Force, in order to
compare it with these existing games.

Chapter 3 reviews di�erent techniques of computational intelligence.
We begin with the multilayered perceptron, an arti�cial neural network which
is trained by supervised learning; in particular, we review the backpropaga-
tion algorithm. We also review other architectures for arti�cial neural net-
works, speci�cally Kohonen's Self-Organizing Map, radial basis functions and
the topographic product of experts. We also review the genetic algorithm
and discuss how it may be used to optimise parameters in the multilayered
perceptron. We also discuss the ensemble methods of bagging and boosting.
Both have been praised within the statistics community for their almost mag-
ical qualities in that they seem to leverage the use of the data and extract
more information from a data set than other methods can.

Chapter 4 gives experimental results for each of these techniques in the
context of our computer game and shows that the multilayered perceptron
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can be trained using backpropagation to be almost as good in terms of riding
e�ciency as a good human player. The genetic algorithm on the other hand
requires much more processing time to achieve this but it also �nds solutions
to the problem of riding the bike which are very di�erent from the solutions
found by a human rider. Our results with the alternative architectures of
neural networks and with the ensemble methods were less impressive and
we discuss the reasons for this. On the other hand, the technique of cross
entropy optimisation did produce some very good results in this context.

Chapter 5 responds to the need for a common platform on which to
experiment with AI methods in computer games. There are for example,
SDK's such as �Unreal� which is a �rst person shooter game and allows
comparison of techniques but one problem with this is that the developer
can only use scripts (rather than more native programming languages such
as C++) which limits the amount of �exibility in the development. Also
we are speci�cally interested in creating an SDK pertaining to bike riding.
Motocross The Force is re-designed to split the AI functionality from
the game functionality; this allows any researcher to implement his/her own
method for augmenting intelligence within the AI and then simply plug-in
the new .dll into the system and generate comparative results.

Finally in Chapter 6 we introduce an improved evolutionary algorithm
which is more robust and stable than the standard genetic algorithm and
provides the best solution in the thesis.

We conclude with a review of the thesis and suggest future directions
for research.

1.4 Contribution of the research

This thesis introduces a new computer game into the research community.
While the emphasis of the thesis is on the computational intelligence meth-
ods used in the research, we must also point out that the game developed,
Motocross The Force, is comparable with similar industry-created games
in terms of e.g. its graphics or physics simulation. This game has now been
re-developed for the research community as a potential test-bed for novel AI
techniques. One of the main contributions of this thesis is to present a new
SDK which the computer game AI community can use to compare di�erent
methods of controlling the bikes.

The overarching aim of the research undertaken in this project is to
optimise a set of parameters which control the bike using computational in-
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telligence techniques. The architecture of the controlling machine is mostly
the multilayered perceptron (see Chapter 3), therefore the problem is to op-
timise the weights of the multilayered perceptron in order to have the bikes
raced around the tracks as fast as possible. To that end, we investigate the
use of a variety of techniques (see below) with which we adapt the parame-
ters (weights) of the multilayered perceptron in order to optimise the speed.
We also investigate alternative architectures (i.e. not the multilayered per-
ceptron) with the same aim of training these machines to race as fast as
possible.

Other contributions of the thesis are based on a comparative study of
a number of di�erent techniques already in the computational intelligence
literature but not previously applied to this type of game. Thus in Chapter
4, we compare:

Backpropagation training of Arti�cial Neural Networks This stan-
dard supervised training method is shown to be trainable to a level
close to that attained by a human expert.

Genetic Algorithms These techniques are also used to train (optimise the
parameters of) arti�cial neural networks. Although this method does
not quite match the e�ciency of the backpropagation technique, it does
�nd novel ways to ride the bike unlike the backpropagation technique
which is simply trained to emulate the human rider.

Ensemble methods which combine multiple classi�ers or regressors. We
introduce a novel parameterisation which enables us to perform boost-
ing or anti-boosting by changing a single parameter. These techniques
were ine�ective, however, in the context of the motocross game.

Alternative architectures We have also investigated alternative architec-
tures of arti�cial neural networks and shown that these techniques do
not perform quite as well as the multilayered perceptron.

Cross Entropy Method We have investigated the use of cross-entropy to
optimise the parameters of the AI and shown that this technique is
working well.

New evolution In Chapter 6 we have developed a new optimisation tech-
nique which improves upon the standard genetic algorithm by using
a technique inspired by the reinforcement learning method of ϵ-greedy
policies.



8 Introduction

We wish to highlight the fact that any external researcher can now create
his/her own AI and compare results with those in this thesis. This is perhaps
one of the most lasting outcomes from this thesis.



Chapter 2

Review of Computer Games

In this thesis we experiment with existing and innovative Arti�cial Intelli-
gence techniques to control motorbikes in a motocross game. Most video
games feature modelled opponents or non-player characters making use of
some form of Arti�cial Intelligence. We are more particularly interested in
racing games or games making use of continuous analogous inputs, turning
left and right, accelerating or decelerating, moving an object up or down.

There are two major aspects which we wish to highlight in this section:

1. Video games and arti�cial intelligence.

2. Video games and physics simulation.

2.1 Video Games and Arti�cial Intelligence

In this section, we review AI techniques in games and programs relevant to
this research.

2.1.1 Games not making use of Advanced Arti�cial In-

telligence

The vast majority of video games nowadays do not use advanced AI tech-
niques, but use traditional AI techniques.
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MX vs ATV Unleashed

Figure 2.1: Screenshot taken from the game MX vs ATV Unleashed.

This game is one of the best motocross games available for PC and consoles,
with a variety of di�erent environments, vehicles and challenges to choose
from [MXVSATV 2005]. This game features traditional AI. The motocross
track is split into lanes like on a motorway and each computer controlled
bike stays in its own lane in order to avoid collision with other bikes. This
behaviour is neither the most natural nor the most e�cient way to race
along a motocross track. The most natural and e�cient way to race along
a motocross track is normally to take the shortest path, which may involve
taking the inside in bends, while attempting to avoid collision with other
bikes.

There are also markers along the track, placed by the track designers,
to tell the computer controlled bikes what must be the target velocities on
portions of the track, when to accelerate and when to decelerate, and what
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are the appropriate portions of the track to restart on after a crash. All bikes
also have exactly the same behaviour.

Figure 2.1 shows an example screenshot from this game.

Flatout Ultimate Carnage

Figure 2.2: Screenshot taken from the game Flatout Ultimate Carnage.

This game is one of the best racing games available for the XBOX 360
[FlatOut 2007]. This game also features traditional AI but the AI seems
more sophisticated than in the game MX vs ATV Unleashed.

In this game there are two or three racing lanes along the track, and
non-player character (NPC) cars switch from one lane to another lane while
attempting to overtake each other, if pushed by another car or following a
collision. In this game there are many objects with which the cars can collide
and there are also many jumps which make the driving unpredictable. The
track also often splits into two or three alternative paths, with one path
being generally faster according to the vehicle used. There are also markers
along the track, placed by the track designers, to tell the NPC cars what
must be the target velocities, when to accelerate and decelerate, what are
the appropriate portions of the track to restart on after a crash. NPC's
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have various behaviours, partly because the vehicles driven have di�erent
characteristics like weight, power, traction and maximum speed.

NPC's do not attempt to avoid accidents, as opposed to more simula-
tion oriented games like Project Gotham Racing 3; accidents are part of
the gameplay and part of the fun to play the game.

Figure 2.2 shows an example screenshot from this game.

Conclusion

The advantage of such a simplistic AI is that it is totally predictable; it is
not likely that one non player character (NPC) has an undesirable behaviour
once in a while. For example, one NPC would not decide to have an accident,
once in a while, with another character; one NPC would not decide to stop
racing, stop on the side of the track or go o� the track for some unknown
reason.

The disadvantage is also that it is totally predictable; after a few laps it
is possible for the player to predict exactly what the NPC's are going to do,
and it is possible for the player to win a race simply by adopting a natural
behaviour, like taking the inside in bends. The NPC's also do not adapt or
learn from experience; their behaviour is constant.

Some techniques are used to make the game slightly more exciting, like
increasing or decreasing the performance of one or two NPC's at some times
during a race, according to the human player performance; these techniques
add an arti�cial twist to the game but the excitement gained can not compare
for some players with the excitement of competing for real against intelligent,
continually adapting characters.
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2.1.2 Games making use of Advanced Arti�cial Intelli-

gence

Forza Motorsport

Figure 2.3: Screenshot taken from the game Forza Motorsport.

Forza Motorsport is a car racing video game for the XBOX and has been
released in May 2005 [Forza 2005]. Its AI system was the result of a unique
collaboration between Microsoft Games Studios, Redmond, USA, and the
Machine Learning and Perception group at Microsoft Research, Cambridge,
UK [Forza2 2005].

One research objective was to introduce a new �fun� feature to the game
based on exploiting �machine learning� techniques. This led to the develop-
ment of the �Drivatar� concept, wherein the game can learn a probabilistic
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model of the player's style of driving. The model is embodied in an AI avatar
which can mimic and reproduce the player's individual driving characteris-
tics independent of any particular track or car. The player can then employ
this avatar to race for them in certain modes in the game, and can also set
up their own customised races against arbitrary �Drivatars�: perhaps against
their own (for the ultimate personalised challenge) or those of friends or even
celebrities.

This is a commercial program and the source code is not available.
It is not possible to �nd a lot of literature about the exact techniques and
mechanisms used in the game. It is believed the game uses multi-layered
perceptron ANN's (see Section 3.1) to control the computer controlled cars,
and the back propagation algorithm to train these arti�cial intelligences from
the recording of human players playing the game.

A screenshot is shown in Figure 2.3.

Simplerace

Julian Togelius and Simon M. Lucas have used various small games, to ex-
periment with arti�cial intelligence and evolution techniques [Togelius 2007].
The games involved racing a car along a track, controlling an helicopter or
hunting for food (Cellz). All these games took place in a physics-based envi-
ronment simulated in discrete time, where the goal involved reaching certain
points in space within a speci�ed time. The commands returned from the
controllers in Cellz are continuous whereas the commands returned from the
controllers in the other games are discrete.

Figure 2.4: Screenshot taken from the game Simplerace.

A car racing competition was arranged as part of the 2007 IEEE
Congress on Evolutionary Computation using the Simplerace game [To-
gelius et al. 2008]. Simplerace is a tactical racing game for one or two
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players (each of which can be a program or human controlling the car via the
keyboard), based on a two-dimensional physics model, where the objective
is to drive a car so as to pass as many randomised way points as possible.
The full Java source code for the game is available freely online to allow
researchers to use the code for benchmarking their own algorithms.

In this simulation, a car is simulated as a 20 x 10 pixel rectangle,
operating in a rectangular arena of size 400 x 300 or 400 x 400 pixels. The
car's complete state is speci�ed by its position s, velocity v, orientation
θ and angular velocity θ̇. The simulation is updated 20 times per second
in simulated time, and each time step the state of the car(s) is updated
according to very simple equations of motion.

Represented among the entries to this competition were a wide variety
of computational intelligence methods, including genetic algorithms, evolu-
tion strategies, neural networks, genetic programming, temporal di�erence
learning, fuzzy logic and force �eld control. Several of the contributions fea-
tured novel uses and combinations of these techniques. Succeeding at the
competition task required being able to control an agent in a dynamic envi-
ronment, but excelling in it required a certain degree of tactics.

A screenshot is shown in Figure 2.4. The interface between the game
and the controllers has similarities with the interface in the AI SDK detailed
in Chapter 5.

TORCS

Another car racing competition was arranged as part of the IEEE WCCI
2008 conference [Loiacono et al. 2008] using the Open Racing Car Simulator
(TORCS) [Torcs 2009].

The TORCS game features:

1. 42 di�erent cars, 30 tracks, and more than 50 computer controlled
opponents to race against.

2. Good 3D graphics with lighting, smoke, skidmarks and glowing brake
disks.

3. Good physics simulation with damage model, collisions, tire and wheel
properties (springs, dampers, sti�ness, ...), aerodynamics (ground ef-
fect, spoilers, ...).
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Figure 2.5: Screenshot taken from the game TORCS.

4. Di�erent types of races from simple practice session up to the champi-
onship.

The user can also develop his/her own computer-controlled driver (also
called a robot) in C or C++. The interface between the game and the con-
trollers has similarities with the interface in the AI SDK detailed in Chapter
5.

Five teams took part in the competition and four out of the �ve par-
ticipating teams described the architecture and training of their controllers
in [Loiacono et al. 2008]. Some of these controllers were CI-based and in-
volved learning while other controllers were non-CI-based and were therefore
non-learning. In this edition of the competition, all of the submitted con-
trollers were outperformed by the non-CI, non-learning best controllers that
come with the game. It was suggested that the controllers developed by
the TORCS developers had access to more state information not directly
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available through the competition API.

A screenshot is shown in Figure 2.5.

Smart Sweepers

One other interesting program is Smart Sweepers by Mat Buckland [Buck-
land 2005a][Buckland 2004][Buckland 2002]. In this simple program, virtual
minesweepers are trained to �nd and collect land-mines scattered about a
very simple 2D world. This program is not really a video game, but it makes
use of ANN's to control vehicles.

Figure 2.6: Screenshot taken from the program Smart Sweepers.

The display is very simple (Figure 2.6). The minesweepers are repre-
sented by the objects that look like tanks and the land-mines are represented
by the green dots. Whenever a minesweeper �nds a mine it is removed and
another mine is randomly positioned somewhere else in the world, thereby
ensuring there is always a constant amount of land-mines on display. The
minesweepers drawn in red are the best performing minesweepers the pro-
gram has evolved so far.
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The minesweepers are tanks and are controlled by adjusting the speed
of the left and right tracks. By applying various forces to the left and right
sides of minesweepers it is possible to give them a full range of movements.
The networks have two outputs, one to designate the speed of the left track,
and the other to designate the speed of the right track.

The networks are trained using a genetic algorithm.

This program is very interesting because the source code is available
and the techniques used are very well explained in detail. This program with
its documentation [Buckland 2005b] have been used as a starting point for
the advanced AI in the game Motocross The Force.

Pong

[McGlinchey 2003] uses the rather old game of Pong (a type of tennis game) in
order to investigate whether neural networks can be used to play the game in
the same way that humans play this game. Some training data was created
by recording human players playing the game, then the training data was
used to train arti�cial intelligence based on Kohonen's Self Organising Map.
The system was successful in playing in a similar style to that of the original
player, and also played with a similar level of skill.

This was extended using the Generative Topographic Mapping [Bishop
et al. 1997] in [Leen and Fyfe 2005] and a comparative study was performed
with the results of [McGlinchey 2003]. A further comparison using the Topo-
graphic Product of Experts (see Chapter 3) was performed in [Fyfe 2005]. All
three of these mappings - SOM, GTM and ToPoE - are so-called topographic
mappings in that they attempt to maintain close relations on the manifold
found between closely related data points.

Conclusion

The advantage of Advanced AI is that it is not predictable. The AI is able to
evolve and adapt to new situations. This can make the game more interesting
to the human player by having intelligent characters in the game evolving
and adapting to the game at the same time as the human player.

The disadvantage of Advanced AI is also that it is not predictable.
From the game developer point of view, the Advanced AI can be seen as a
black box; it is not possible for the game developer to be sure that undesir-
able behaviours won't be produced once in a while; and when undesirable
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behaviours are produced, it is not easy for the game developer to understand
it and to �x it.

Advanced AI is more time consuming to develop and less reliable than
traditional AI; these are the reasons Advanced AI is not the kind of AI
traditionally used in the game industry.

2.2 Video Games and Physics Simulation

Video games can o�er rich environments to experiment with arti�cial intelli-
gence techniques. One way to increase the richness of the environment is to
use good Physics Simulation.

With Physics Simulation, entities in the game, like characters and ve-
hicles, can move and act realistically just as they do in the real world; this
can contribute to the player's immersion into the game. If an entity in a
game is moving in a non-realistic manner, this breaks the player's immersion
and decreases satisfaction with the game.

The entities' behaviours can be complex and unpredictable, the vehicles
can be very fast and hard to control; vehicles can skid in turns and do jumps;
these complex and rich behaviours take an important part in the �fun� to play
a game and improve the player's gaming experience.

The complex behaviours can also create complex problems to solve
for arti�cial intelligence techniques. In this section we review simulation
techniques in games and programs relevant to this research.

2.2.1 Rigid Body Simulation

Rigid body simulation, also known as physics simulation, is a method for
simulating mechanical systems. It is generally present as a piece of soft-
ware (library), used as part of another piece of software (in this case a video
game). Physics libraries can be commercial middleware like Havock Physics
[Havok 2005] and Nvidia PhysX [PhysX 2005], or open source like the Open
Dynamics Engine (ODE) [Ode 2006]. The binary Nvidia PhysX is now to-
tally free and available for immediate download by developers with much
better performance, stability and functionalities than ODE. PhysX supports
hardware acceleration using PhysX Processing Units (PPU) and now modern
Nvidia Graphics Processing Units (GPU); Modern GPU's have a highly par-
allel structure that makes them more e�ective than general-purpose CPU's
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for a range of complex applications such as physics simulation; the simulation
can run faster. Running the simulation on the GPU also gives the bene�t to
o�oad calculations from the CPU, allowing it to perform other tasks instead,
potentially resulting in a smoother gaming experience.

2.2.2 Games not making use of Rigid Body Simulation

Many racing games do not use or do not fully use Rigid Body Simulation.

Motocross Madness 2

Motocross Madness 2 is a motocross game, released in year 2000; it was
very popular and still is a fun game to play.

The game [MCM2 2000] does not really make use of rigid body simula-
tion; instead the game makes use of simple physics rules; the bike and biker
can be seen as one entity or one rigid body, a point evolving on a terrain; this
entity can jump, skid, absorb shocks from the terrain. The turns can be very
sharp and not realistic; shocks are absorbed by the entity until a threshold
after which the bike crashes.

The character animations are prede�ned, i.e. all the characters moves
come from motion capture or have been generated by a human animator.
When the character turns, he stretches his leg inside the turn like real riders
do; when the character is in the air, he can perform a stunt like stretching
both arms and legs; when the bike crashes, the bike and bikers become sepa-
rate entities, the character slides on the terrain and animates unrealistically
and irrespective of the obstacles he meets on the terrain.

A closer look at the wheels allows the user to see that the wheels do
not really touch the ground, the wheels slide on the ground when the bike
turns. The game does not qualify as a satisfactory rigid body simulation
because there is really only one body used for both bike and character when
the bike is in control and one body per bike and per character when the bike
is out of control and crashes. To that extent, the simulation is too rigid body.
For the game to qualify as a modern rigid body simulation, each part of the
character body and bike would need to be represented using separate rigid
bodies.
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MX vs ATV Unleashed

This game is one of the best motocross games available for PC and consoles,
with a variety of di�erent environments, vehicles and challenges to choose
from, as described in the previous section. It has been developed by Rainbow
Studios, the developers of Motocross Madness 2.

Body parts of the character and parts of bike are represented using
separate rigid bodies; the user can see the bike and character animate while
evolving along a track. A closer look at the wheels allows the user to see that
the wheels do not really touch the ground, the wheels slide on the ground
when the bike turns. The control model is in fact very similar to the one in
the previous game Motocross Madness 2.

Rigid body simulation is used for aesthetic purposes and has little e�ect
on the control of the bike and the gameplay. The game has been released
on platforms with much more processing power than was available when the
previous game, Motocross Madness 2 was released. The extra processing
power was used for improving the graphics rather than the physics simulation.

Gran Tourismo 5 Prologue

This Playstation 3 game [GT5P 2008] showcases the automotive experience
that is imminent with Gran Turismo 5.

The game looks very good, and makes good use of the graphical capa-
bilities of the Playstation 3.

There are many parameters the user can set, especially in terms of the
simulation model and driving aids.

A closer look at the game allows the user to see that the game does not
really use physics simulation. If the user drives a car at full speed head on
into another car, the two cars stop unrealistically and seem unable to �ip onto
a side. Similarly, if the user attempts to perform a doughnut (manoeuvre
where the car is rotating around a set of wheels in a continuous motion), the
skid marks left on the road seem to be perfectly circular, even if the road is
not �at.

The physics engine is a very complex physics model representing the
physics of cars; this complex model takes many parameters into considera-
tion (e.g. the characteristics of cars, whether driving aids are on or o�) and
gives the user the illusion of driving a real car. In extreme conditions (ac-
cidents, skidding) this complex physics model may prove to be impractical,
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not realistic, and break.

The physics engine allows the user to easily experience many aspects of
driving, and have the impression of driving well, at the expense of accuracy
and realism of the simulation. This game is more an arcade game, and less
a simulator game, when compared to other games like Project Gotham
Racing 3.

The full game (Gran Tourismo 5) is due in 2010. In [Remo 2009],
the producer of the series, Kazunori Yamauchi, explains that an entirely
new game engine has been developed for Gran Tourismo 5. Hence Gran
Tourismo 5 Prologue was using the legacy game engine from Gran
Tourismo 4, at the time available on Playstation 2, with a lot less process-
ing power than nowadays consoles and PC; this explains the limited physics
simulation featured in Gran Tourismo 5 Prologue.

2.2.3 Games making use of Rigid Body Simulation

Many racing games make full use of Physics Simulation. These games include
Project Gotham Racing 3, Flatout Ultimate Carnage and Forza Mo-
torsport. In these games, the wheels and the chassis are represented using
separate rigid bodies or entities; the wheels are attached to the chassis using
simulated suspensions, and the tyres touch the ground using simulated tyre
friction.

In racing games making full use of physics simulation, all the car be-
haviours are generated implicitly by the simulation and not explicitly and
deterministically by the program. For example, when the player commands
the vehicle to turn, no part of the program explicitly turns the vehicle as
a result of the turn command; instead the program explicitly turns the di-
rection of the front wheels and, because of physics simulation and simulated
friction between the wheels and the ground, the vehicle turns.
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2.3 Motocross The Force

Figure 2.7: Screenshot taken from the game Motocross The Force.

Motocross The Force is a motocross game featuring terrain rendering and
rigid body simulation applied to bikes and characters [Chaperot et al. 2009].
The game has been developed in conjunction with Eric Breistro�er (2D and
3D artist), and Thibault Saint Olive (track designer). The game has been
released and is now available for download [Chaperot 2009]. A screenshot is
shown in Figure 2.7.

There are various interesting aspects in using arti�cial neural network
methods in a motocross game. Because the design of an ANN is motivated
by analogy with the brain, the rationale for their use in the current context is
that entities controlled by ANN are expected to behave in a human or animal
manner, and these behaviours can add some life and content to the game.
The human player has also the possibility to create new tracks. ANN's have
the capability to perform well and extrapolate when presented with new and
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di�erent sets of inputs from the sets that were used to train them; hence an
ANN trained to ride a motorbike on a track should be able to ride the same
motorbike on another similar track. ANN's have the capability to train and
evolve their behaviours. ANN's may be able to perform with good lap times
on any given track while still retaining elements of human behaviour.

No gameplay mechanism is enforced in the game; the player can de-
cide not to race and just ride the bike and explore the environment. The
game features a clock and the player can also decide to race along the track,
competing against the clock or against NPC's.

The controls for the human player are the same as the controls for the
NPC's. The two basic controls are:

• accelerate and brake.

• turn left and right.

The game has evolved with time; two optional controls have been added
to the basic controls; these controls are especially useful for controlling the
bike when it is in the air before landing:

• rotation of the bike forward and backward.

• rotation of the bike left and right.

The controls can thus be summarised by four �oating point values in
the range {-1 to 1}; if a character decides not to use the optional controls, it
can leave them to 0 (default value).

There is one marker known as a waypoint which marks the position
and orientation of the centre of the track, every metre along the track. These
waypoints are used to ensure bikes follow the track and we will talk about
positions in waypoint space when giving positions with respect to the way-
points. For example, for the evolutionary algorithms, the score is calculated
as follows:

• vPassWayPointBonus is a bonus for passing through a waypoint.

• vMissedWayPointBonus is a bonus/penalty (i.e. normally negative)
for missing a waypoint.

• vCrashBonus is a bonus/penalty (i.e. normally negative) for crashing
the bike.
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• vFinalDistFromWayPointBonusMultiplier is a
bonus/penalty (i.e. normally negative) for every metre away from the
centre of the next waypoint.

All the experiments with AI techniques are done in the context of
this motocross game. During the experiments, many parameters are found
empirically; the parameters found may not always be the most optimal but
together prove to produce good results. Many parameters given in this thesis
are given for indication purposes and to help the reader in reproducing the
experiments.

Body parts of the character and parts of bike are represented using
separate rigid bodies. One big di�erence between this game and other games
like MX vs ATV Unleashed is that in this game rigid body simulation is
not only used for aesthetic purposes but is used for simulating the bike and
takes part in the gameplay. As opposed to other motorbike games, the two
wheels touch the ground and the bike and rider fully respond to bumps on
the track.

Some driving aids have been added to allow human players and AI
to more easily play the game; for example, forces are added to the bike to
help the bike maintain its balance. Even with the driving aids the game is
more di�cult to play than most other motocross games. The game does not
really qualify as a simulator because the simulation is not very realistic. The
game makes use of physics simulation; the physics simulation creates rich
bike behaviours that enrich and improve the player's gaming experience; it
was assumed that it was more enjoyable to play a game that is not totally
predictable, where it is not possible to take exactly the same lanes and do
the same jumps, like in real life, rather than a game where it is possible to
do exactly the same things lap after lap.

The bike physics is illustrated in Figure 2.8.
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Figure 2.8: Bike Physics: The bike and biker as seen in the game and their
associated collision and dynamic objects used in the simulation.

2.4 Conclusion

The processing power available on game platforms is always increasing, with
the processing power nearly always dedicated to displaying nice graphics and
smooth animations. Graphics and animations are what the consumers see
�rst, and base their buying decisions on.

Other characteristics of the game, like good gameplay, good physics
simulation and AI, are more di�cult to evaluate in a short amount of time,
and are generally allocated less resources by the game developers.

Very simple simulation and simple simulated models can sometimes be
a choice. In arcade games, fun and gameplay are preferred to simulation and
realism; this allows children to play a game like a car racing game that would
otherwise only be playable by adults if the simulation was perfectly accurate.

Arcade games also have the advantage of requiring less processing
power than simulators, so the same game can run and the gameplay be the
same on platforms with very di�erent technical capabilities.

Video games and physics simulation o�er complex problems to solve
for arti�cial intelligence techniques; this becomes even more true as the com-
plexity of the physics models increases as does the simulated environment
featured in the games.

All games reviewed in this chapter o�er complex problems to solve
for arti�cial intelligence techniques. The game Motocross The Force is
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not any better than any of the other games; it has been chosen for testing
Computational Intelligence techniques in this thesis mainly because the game
has been developed by the student, the full source code was available and
there was no limit for developing and testing Computational Intelligence
techniques for the game.
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Chapter 3

Literature Review

3.1 Arti�cial Neural Networks

Arti�cial Neural Networks [Bishop 1995, Hertz et al. 1992, Hecht-Nielsen
1991, Haykin 1994, Arbib 1995] are a form of Advanced AI or Computational
Intelligence. The game developer does not directly describe the behaviour
of NPC's; instead he creates structures and algorithms that can then learn,
adapt or evolve from examples or experience. More generally, ANN's are
general non-parametric techniques where the parameters inside the networks
are given values according to information derived from the data.

3.1.1 Multilayered Perceptrons

Arti�cial neural networks are usually software simulations which are models
at some level of real brains. Multilayered perceptrons (MLP) networks are
the �rst type of neural networks investigated in this thesis. Other types of
neural networks [Fyfe 2005] may be equally useful for the task of controlling
computer bikes in the motocross game.

Models from this type of ANN are made of layers of neurons. Activity
in the network is propagated forwards via weights from the input layer, x,
to the hidden layer where some function of the net activation is calculated.
Then the activity is propagated via more weights to the output layer, y,
where some function of the net activation may also be calculated.

The neurons in the input layer are passive in that they merely hold
the activation corresponding to the information to which the network must
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Figure 3.1: A Multilayered Perceptron Network.

respond. In our case this will be local information about the terrain which
the arti�cial rider is currently meeting.

The neurons in the hidden layer are so-called as they cannot directly
communicate in any way with the external environment. They only commu-
nicate with neurons in the input layer and in the output layer.

The neurons in the output layer communicate the response of the net-
work to the external environment. In our case the response will be the
actions which are required to ride the arti�cial motorbike, corresponding to
the appropriate response to the local information about the terrain which
the arti�cial rider is currently meeting.

Each neuron is a simple processing unit, with a number of inputs; one
input can be a bias which is a non-zero input which allows the neuron to
produce an output even if the sum of all other inputs is equal to zero. The
activation function is typically a sigmoid function and can be a logistic or
a tanh() function. Both of these functions satisfy the basic criterion that
they are di�erentiable. The di�erentiable property is important so that an
algorithm such as the backpropagation algorithm can be used to train the
network. In addition they are both monotonic and have the important prop-
erty that their rate of change is greatest at intermediate values and least at
extreme values. This makes it possible to saturate a neuron's output at one
or other of their extreme values.
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Figure 3.2: A neuron which corresponds to a single unit of a multilayered
perceptron network.

An MLP network and a neuron are illustrated in Figures 3.1 and 3.2.

The �nal point worth noting is the ease with which their derivative can
be calculated:

• if f(x) = tanh bx, then f ′(a) = b(1− f(a) ∗ f(a))

• if f(x) = 1
1+exp(−bx)

, then f ′(a) = bf(a)(1− f(a))

Activation is passed from inputs to hidden neurons through a set of
weights, W . At the hidden neurons, a non-linear activation function is cal-
culated, e.g. m tanh act

r
where r is a parameter which controls the slope of

the sigmoid function. Let us have N +1 input neurons 1, H hidden neurons,
and O output neurons. Then the calculation at the hidden neurons is:

acti =
N∑
j=0

Wijxj,∀i ∈ 1, ..., H (3.1)

hi = tanh
act

r
(3.2)

where x0 is the bias, a constant non-zero input,and hi is the �ring of the ith

hidden neuron. This is then transmitted to the output neurons through a
second set of weights, V , so that:

acti =
H∑
j=0

Vijhj, ∀i ∈ 1, ..., O (3.3)

oi = acti (3.4)

1The additional 1 corresponds to the bias term.
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where h0 is the bias, a constant non-zero input, hi is the �ring of the ith

hidden neuron and oi is the ith output from the network.

Thus activation is passed from inputs to outputs. The whole machine
tries to learn an appropriate mapping so that some function is being optimally
performed. Such networks use supervised learning to change the parameters,
W and V i.e. we must have a training data set which features inputs and the
corresponding desired outputs or correct answers. One common supervised
learning technique is the backpropagation algorithm (see later).

A non-linear activation function could also be calculated in the output
layer; the network could also have more than one hidden layer though it can
be shown theoretically that the single hidden layer is enough to model any
function with only a countable number of discontinuities. Given that we
wish a continuous response in the main from our network with only a small
number of discontinuities (e.g. when the decision to jump over 2 hills rather
than 1 hill is taken), we can easily make the decision that a single layer of
hidden neurons is su�cient for our purposes.

3.1.2 The Backpropagation Algorithm

Let the P th input pattern be xP , which after passing through the network
evokes a response oP at the output neurons. Let the target value associated
with input pattern xP be tP . Then the error at the ith output is EP

i = tPi −oPi
which is then propagated backwards (hence the name) to determine what
proportion of this error is associated with each hidden neuron. The algorithm
is:

1. Initialise the weights to small random numbers.

2. Choose an input pattern, xP , and apply it to the input layer.

3. Propagate the activation forward through the weights till the activation
reaches the output neurons.

4. Calculate the δ's for the output layer δPi = (tPi − oPi )f
′(ActPi ) using the

desired target values for the selected input pattern.

5. Update the hidden to output layer weights with ∆Pwij = γ.δPi .o
P
j ,

where oPj is the output of the jth hidden neuron to the P th pattern.

6. Calculate the δ's for the hidden layer(s) using
δPi =

∑O
j=1 δ

P
j wij.f

′(ActPi ).
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7. Update the input to hidden weights in the network according to
∆Pwij = γ.δPi .o

P
j where oPj is the value of the jth input neuron in

the P th pattern.

8. Repeat steps 2 to 6 for all patterns.

with wij the jth weight of the ith neuron in a layer, and oP
j the jth input to

the neuron (i.e. jth input to the network if the neuron is in the �rst hidden
layer, output of the jth neuron in the previous layer otherwise).

3.1.3 Kohonen's Self-Organizing Map

We mentioned in Chapter 2 that McGlinchey used a self-organising map in
the game of Pong. This motivates us to try the same architecture on the
motocross game.

Kohonen's Self-Organizing Map (SOM) [Kohonen 1995] is one of the
most popular ANN's. It is a topology preserving mapping technique, based
on a form of unsupervised learning, known as competitive learning. The
SOM was introduced as a data quantisation method but has found at least
as much use as a visualisation tool.

A topographic mapping (or topology preserving mapping) is a trans-
formation which captures some structure in the data so that points which
are mapped close to one another share some common feature while points
which are mapped far from one another do not share this feature. The data
space is generally high dimensional and the feature space is generally two-
dimensional.

Unsupervised learning means that no human intervention is needed
during the learning process; the network can create mappings from data
space to feature space and �nd interesting features of the data without any
human labelling or mapping example.

Competitive learning, also used for vector quantisation, is a process
where nodes in feature space (neurons in the output layer) are competing
over taking responsibility for data samples, and only one node (the winning
neuron) takes full responsibility for a data sample. The neurons are arranged
in neuron space with some structure e.g. typically if we imagine a one dimen-
sional neuron space, the neurons are equally placed in a line or if we imagine
a two dimensional neuron space, the neurons may be at the corners of a
regular grid. During the learning process, not only are the weights into the
winning neuron updated but also the weights into its neighbours where such
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neighbours are identi�ed in neuron space not data space. Kohonen de�ned
a neighbourhood function f(i, i∗) of the winning neuron i∗. The neighbour-
hood function is a function of the distance between i and i∗ in neuron space.
A typical function is the Di�erence of Gaussians function which, because of
its shape, is also known as the Mexican hat function; thus if unit i is at point
ri in the output layer then:

f(i, i∗) = a exp(
− ∥ ri − ri∗ ∥2

2σ2
a

)− b exp(
− ∥ ri − ri∗ ∥2

2σ2
b

) (3.5)

With a > b and σa < σb.

Using this function (3.5), neurons which are close to the winning neuron
in the output layer are also dragged towards the input data while those
neurons further away are pushed slightly in the opposite direction.

The algorithm is:

1. Select at random an input data sample.

2. There is a competition among the output neurons. That neuron whose
weights are closest to the input data sample wins the competition:

winning neuron,i∗ = argmin(||x− wi||) (3.6)

Where ||x−wi|| represents the Euclidean distance between the weights
of a neuron i and the input data sample. Other distance functions can
also be used.

3. Now update all neurons' weights using:

wij = wij +∆wij (3.7)

∆wij = α(xj − wij) ∗ f(i, i∗) (3.8)

Where:

f(i, i∗) = a exp(
− ∥ ri − ri∗ ∥2

2σ2
a

)− b exp(
− ∥ ri − ri∗ ∥2

2σ2
b

) (3.9)

4. Go back to step 1.
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3.1.4 Radial Basis Functions

Radial Basis Functions networks [Haykin 1994] have a similar functionality
but di�erent architecture to MLP networks. The input layer is simply a
receptor for the input data. The crucial feature of the RBF network is the
function calculation which is performed in the hidden layer. This function
performs a non-linear transformation from the input space to the hidden
layer space. The hidden neurons' functions form a basis for the input vectors
and the output neurons merely calculate a linear (weighted) combination of
the hidden neurons' outputs. An often-used set of basis functions is the set of
Gaussian functions whose mean and standard deviation may be determined
in some way by the input data. Therefore if ϕ(x) is the vector of hidden
neurons' outputs when the input pattern x is presented and if there are M
hidden neurons, then:

ϕ(x) = (ϕ1(x), ϕ2(x), ..., ϕM(x))T (3.10)

where ϕi(x) = exp(−λi||x− ci||2) (3.11)

where the centres ci of the Gaussians will be determined by input data. Note
that the terms ||x− ci|| represent the Euclidian distance between the inputs
and the ith centre. The output of the network is calculated by:

y = w.ϕ(x) = wTϕ(x) (3.12)

where w is the weight vector from the hidden neurons to the output neuron.

The training of RBF networks is done using an algorithm very similar
to the back propagation algorithm as described above; the main di�erence
is only the weights for the output neurons have to be trained; hence the
training is much faster. However the training time with MLP was already
very fast and was not an important issue.

3.1.5 Topographic Products of Experts

In this section, we introduce a new topology preserving mapping we call the
Topographic Products of Experts (ToPoE) [Fyfe 2007].

The most common topographic mappings are Kohonen's Self-
Organizing map (SOM, above) [Kohonen 1995] and varieties of multidimen-
sional scaling [Hastie et al. 2001]. Like SOM, ToPoE can be used as a visual-
isation tool. As opposed to SOM, ToPoE has the advantage that it explicitly
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dispenses with the quantisation element; while its centres may lie on a mani-
fold, the user interpolates the projections of data points between the centres
to infer the shape of the manifold.

In a product of experts, all the experts take responsibility for all the
data: the probability associated with any data point is the (normalised)
product of the probabilities given to it by the experts.

We envisage that the underlying structure of the experts can be rep-
resented by K latent points, t1, t2, ..., tK which have some structure to their
geometry in the same way which we saw with the neurons in Kohonen's Self
Organising Map. To allow local and non-linear modelling, we map those la-
tent points through a set of M basis functions, f1(), f2(), ..., fM(). This gives
us a matrix ϕ where ϕkj = fj(tk).

Thus each row of ϕ is the response of the basis functions to one latent
point, or alternatively we may state that each column of ϕ is the response of
one of the basis functions to the set of latent points. One of the functions,
fj(), acts as a bias term and is set to one for every input. Typically the others
are Gaussians centred in the latent space. The output of these functions are
then mapped by a set of weights, W , into data space. W is M ×D, where
D is the dimensionality of the data space, and is the sole parameter which
we change during training.

We will use wi to represent the ith column of W and ϕj to represent
the row vector of the mapping of the jth latent point. Thus each basis point
is mapped to a point in data space, mj = (ϕjW )T .

We may update W either in batch mode or with online learning. To
change W in online learning, we randomly select a data point, say xi. We
calculate the current responsibility of the jth latent point for this data point,

rij =
exp(−γdij

2)∑
K exp(−γdik

2)
; (3.13)

where dpq = ||xp −mq||, the Euclidean distance between the pth data point
and the projection of the qth latent point (through the basis functions and
then multiplied by W ). If no centres are close to the data point (the denom-
inator of (3.13) is zero), we set rij =

1
K
, ∀j.

De�ne md
(k) =

∑M
m=1 wmdϕkm, i.e. m

(k)
d is the projection of the kth

latent point on the dth dimension in data space. Similarly let x
(n)
d be the dth

coordinate of xn.

[Fyfe 2007] shows that a learning rule which maximises the likelihood
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of the data under the model is:

∆nwmd =
K∑
k=1

ηϕkm(x
(n)
d −m

(k)
d )rkn; (3.14)

where we have used ∆n to signify the change due to the presentation of the
nth data point, xn, so that we are summing the changes due to each latent
point's response to the data points. Note that, for the basic model, we do
not change the ϕ matrix during training at all.

3.2 Genetic Algorithms

Genetic algorithms (GA) [Mitchell and Forrest 1993, Dasgupta 1993] became
popular after the seminal work of Holland [Holland 1981] in the 1970's and
80's. His algorithm is usually known as the simple GA now since many of
those now using GA's have added bells and whistles [Rechenberg 1994]. Hol-
land's major breakthrough was to code a particular optimisation problem in
a binary string, a string of 0's and 1's. He then created a random population
of these strings and evaluated each string in terms of its �tness with respect
to solving the problem. Strings which had a greater �tness were given greater
chance of reproducing and so there was a greater chance that their chromo-
somes (strings) would appear in the next generation. Holland showed that
the whole population of strings eventually converged to satisfactory solutions
to the problem.

Notice that the population's overall �tness tends to increase as a result
of the increase in the number of �t individuals in the population. However,
there may be just as �t (or even �tter) individuals in the population at time
t-1 as there are at time t; there is a strong stochastic element to the process
of evolution. Thus, when we are discussing evolution, we can only make
statements about populations rather than individuals.

We can identify the problem of �nding appropriate weights for the MLP
as an optimisation problem and have this problem solved using the GA i.e.
we are using exactly the same architecture for the arti�cial neural network
as in the previous chapter but are optimising the network's weights using the
genetic algorithm: we code the weights as �oating point numbers and use
the algorithm on them with a score or �tness function.

The algorithm is:

1. Initialise a population of chromosomes randomly.
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2. Evaluate the �tness of each chromosome (string) in the population.

3. For each new child chromosome:

(a) Select two members from the current population. The chance of
being selected is proportional to the chromosomes' �tness.

(b) With probability, Cr, the crossover rate, cross over the numbers
from each chosen parent chromosome at a randomly chosen point
to create the child chromosomes.

(c) With probability, Mr, the mutation rate, modify the chosen child
chromosomes' numbers by a perturbation amount.

(d) Insert the new child chromosome into the new population.

4. Repeat steps 2-3 till convergence of the population.

The desired characteristics of evolved individuals are expressed in the
�tness or score function, used for the evaluation of individuals in the popula-
tions. The algorithm applied to the motocross game is illustrated in Figure
3.3.

 

Initialise 

a population of 

AI’s 

Generation N 

Evaluate each AI 

in terms of riding 

a bike in the 

motocross game 

 

New population 

Generation N+1 
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Crossover 

Selection 
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No 

Yes 

Figure 3.3: GA applied to the motocross game.
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3.3 Ensemble Methods

Recently a number of ways of combining predictors have been developed e.g.
[Breimen 1999; 1997, Friedman et al. 1998, Heskes 1997]. Perhaps the sim-
plest is bagging predictors. The term �bagging� was coined by joining boot-
strapping and aggregating; we are going to aggregate predictors and in doing
so we are bootstrapping a system. We note that the term �bootstrapping�
was derived from the somewhat magical possibilities of �pulling oneself up by
one's bootstraps� and the process of aggregating predictors in this way does
give a rather magical result - the aggregated predictor is much more powerful
than any individual predictor trained on the same data [Breimen 1999; 1997,
Friedman et al. 1998, Heskes 1997]. It is no wonder that statisticians have
become very convincing advocates of these methods.

3.3.1 Bagging

Bootstrapping [Breimen 1999] is a simple and e�ective way of estimating a
statistic of a data set. Let us suppose we have a data set, D = {xi, i =
1, ..., N}. The method consists of creating a number of pseudo data sets,
Di, by sampling from D with uniform probability with replacement of each
sample. Thus each data point has a probability of (N−1

N
)N → 0.368 as N →

∞ of not appearing in each bootstrap sample, Di. For example,

1. if N = 100, (N−1
N

)N = 0.366;

2. if N = 1000, (N−1
N

)N = 0.3677;

3. we are dealing with data with N ≈ 105, (N−1
N

)N = 0.3679.

Each predictor is then trained separately on its respective data set and the
bootstrap estimate is some aggregation (almost always a simple averaging)
of the estimate of the statistic from the individual predictors. Because the
predictors are trained on slightly di�erent data sets, they will disagree in some
places and this disagreement can be shown to be bene�cial in smoothing the
combined predictor. Typically, the algorithm can be explained as follows:

1. Create N bags by randomly sampling from the data set with replace-
ment.

2. The probability of any single piece of data to be in any particular bag
is approximately 0.631.
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3. ANN's are trained on the bags separately.

4. The trained ANN's are then presented with an input and the outputs
of the ANN's are combined.

We can use a number of di�erent methods to combine the outputs from the
di�erent bags. We chose to use as the combination operator, in spirit similar
to [Heskes 1997], the following:

OANN = OAV E ∗ (1− w) +OWIN ∗ w; (3.15)

With OAV E, the average of all ANN's outputs, OWIN , the output of the
most con�dent ANN, which is the output with the largest magnitude, and
w the winning parameter varying from 0 to 1. This allows us to vary the
combination method by varying the single parameter w.

3.3.2 Boosting

There has been recent work identifying the most important data samples
[Vapnik 1995]; and presenting the ANN more with the most important data
samples (boosting [Friedman et al. 1998]) in order to concentrate training
on these more di�cult data. Therefore the supervised method (for exam-
ple backpropagation or tree-based classi�cation) is initially asked to learn to
output the correct answer (the target response) for all of the data. It will suc-
ceed with some but may fail with others. These others are then concentrated
upon for further training of the supervised method.

There are a number of ways to implement the boosting algorithm.
Algorithmically an error is calculated as the di�erence between the de-
sired/target output and the output given by the ANN. Subsequently, the
ANN is presented more with training samples which produce large errors. We
will also investigate a technique we call anti-boosting: with anti-boosting, the
ANN is presented more with samples which produce small errors i.e. we are
emphasising those samples which seem to be easiest for the backpropagation
algorithm to learn.

We investigate the e�ect of di�erent types of training data. For exam-
ple, some parts of the track are relatively easy and the rider can accelerate
quickly over these while other parts are far more di�cult and so more care
must be taken. The latter parts are also those where most accidents happen.
Our �rst conjecture is that training the neural network on these more di�-
cult parts might enable it to concentrate its e�orts on the di�cult sections
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of the track and so a training routine is developed in which each training
sample has a probability to be selected for training the ANN proportional to
the error produced the last time the sample was presented to the ANN. This
allows us to train the ANN with more di�cult situations.

3.4 The Cross Entropy Method

The cross entropy method has been well introduced in [de Boer et al. 2004]
and was motivated as an adaptive algorithm for estimating probabilities of
rare events in complex stochastic networks. In such a situation, a Monte
Carlo simulation which draws instances from the true distribution of events
would require an inordinate number of draws before enough of the rare events
were seen to make a reliable estimate of their probability of occurring. It was
soon realised that the cross entropy method can also be applied to solving
di�cult combinatorial and continuous optimisation problems with a simple
modi�cation of the method. Generally speaking, the basic mechanism in-
volves an iterative procedure of two phases:

1. draw random data samples from the currently speci�ed distribution.

2. identify those samples which are, in some way, �closest� to the rare
event of interest and update the parameters of the currently speci�ed
distribution to make these samples more representative in the next
iteration.

In this section, we wish to apply the method of cross entropy to the N-persons
Iterated Prisoner's Dilemma, an abstract mathematical game which has close
links to the formation of oligopolies [Wang et al. 1999].

The Cross Entropy method is best approached from the perspective of
its use in estimates of statistics concerning rare events such as the probability
measure associated with the rare event. We discuss this �rst before going on
to apply the method to the �eld of optimisation.

3.4.1 Rare Event Simulations

Let l = (S(x) > γ) be the event in which we are interested and typically we
will be interested in problems in which l is very small. We could use Monte
Carlo methods to estimate l but if l is very small this would lead to a very
large number of samples before we could get reliable estimates of l. The cross
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entropy method uses importance sampling rather than simple Monte Carlo
methods: if the original pdf of the data is f(x), then we require to �nd a
pdf, g(x), such that all of g()'s probability mass is allocated in regions in
which the samples are close to the rare-event. More formally, we have the
deterministic estimate

l =

∫
I{S(x)>γ}f(x)dx =

∫
I{S(x)>γ}

f(x)

g(x)
g(x)dx = Eg()

[
I{S(X)>γ}

f(X)

g(X)

]
.

(3.16)
where IL is the indicator function describing when L in fact occurred. An
unbiased estimator of this is

l̂ =
1

N

N∑
i=1

I{S(Xi)>γ}
f(xi)

g(xi)
=

1

N

N∑
i=1

I{S(Xi)>γ}W(f(xi), g(xi)) (3.17)

where W() is known as the likelihood ratio.

The best g() in (3.16) is g∗(x) =
I{S(x)>γ}f(x)

l
, which would have the

same shape as f() but all its probability mass in the interesting region. This is
illustrated in Figure 3.4. Note that for the optimal g(),

∫
x:S(x)>γ

g∗(x)dx = 1

while
∫
x:S(x)>γ

f(x)dx = l.

Figure 3.4: The original distribution f() has probability mass outwith the
region we are interested in but the importance sampling distribution has
only domain x : S(x) > γ.

However we don't know l. (This is exactly what we are trying to get).
So what we do is to pick a family of pdfs g(x,v), parameterised by v (v will
be the mean and variance for Gaussian).
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We now wish to minimise Kullback Leibler divergence between g∗ and
g(),

minKL(g∗, g) =

∫
g∗(x) ln g∗(x)dx−

∫
g∗(x) ln g(x,v)dx (3.18)

So we maximise the cross entropy
∫
g∗(x) ln g(x,v)dx.

We pick v to max
∫ I{S(x)>γ}f(x)

l
ln g(x,v)dx, which is the same as

max

∫
I{S(x)>γ}f(x) ln g(x,v)dx, (3.19)

where we have discarded l a constant. But getting an optimal g(x,v) for a
particular γ may not be an easy task. Therefore we create a set of γt for
which we estimate the corresponding vt. The γt are chosen such that

P (x : S(x) > γt) > P (x : S(x) > γt+1) (3.20)

i.e. at each iteration, the events are becoming more rare under f(). Therefore

max

∫
I{S(x)>γ}f(x) ln g(x,v)dx (3.21)

= max
vt

∫
I{S(x)>γt}

f(x)

g(x,vt−1)
ln g(x,vt)g(x,vt−1)dx (3.22)

= max
vt

Eg(x,vt−1)

{
I{S(x)>γt}W(f(x), g(x,vt−1)) ln g(x,vt)

}
(3.23)

This is deterministic but we are working with samples. So we pick vt

to maximise

max
vt

1

N

N∑
i=1

I{S(xi)>γt}W(f(xi), g(xi,vt−1)) ln g(x,vt) (3.24)

For example, if g(x,v) = 1√
2πσ2

e−
1
2
(x−µ

σ
)2 , we �nd minimum of

1

N

N∑
i=1

I{S(xi)>γt}Wt−1

{
ln(σ) +

1

2σ2
(x− µ)2

}
(3.25)

We calculate the derivative of this with respect to the parameters, and set
this equal to 0, to determine

µ̂ =

∑N
i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)Xi∑N
i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)

(3.26)

σ̂2 =

∑N
i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)(xi − µ̂)2∑N

i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)
(3.27)
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The �cross entropy method� is so-called since we minimise the Kullback-
Leibler divergence between the data distribution and the importance sam-
pling distribution.

3.4.2 Algorithm for Rare Events

Then the simplest algorithm [de Boer et al. 2004] depends on working within
a family of pdfs whose parameters we update i.e. let f(x) = f(x,u), u being
a parameter of the family to which f() belongs; then the basic algorithm is

1. De�ne v̂0 = u. Set t=1.

2. Generate random samples, X1, ...,XN from f(x, v̂t−1).

3. Calculate S(X1), ..., S(XN) and order them. Let γ̂t be the 1−ρ sample
quantile, above which we identify the �elite� samples.

4. Use the same samples to calculate

v̂t =

∑N
i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)h(xi)∑N

i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)
(3.28)

where h(Xi) is capturing some statistic of the elite samples: for exam-
ple, if we have a Gaussian random variable, h() would be de�ning the
mean and variance of the distribution.

5. If γ̂t = γ, continue; else t = t+ 1 and return to 2

6. Generate a sample X1, ...,XN1 from f(x, v̂t) and estimate

l =
1

N1

N1∑
i=1

I{S(Xi)>γ̂t}W (Xi,u, v̂t−1) (3.29)

Note that, although step 4 looks formidable, it is actually only counting the
fraction of samples which satisfy the current criterion.

3.4.3 Cross Entropy Method for Optimisation

For optimisation, we need to turn the problem into the so-called associated

stochastic problem(ASP) �rstly. The basic method is
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• Generate random samples from the associated stochastic problem using
some randomisation method.

• Update the parameters (which will typically be parameters of the pdf
generating the samples) to make the production of better samples more
likely next time. For a Gaussian distribution, this results in updates
only to the mean, µ, and covariance, Σ.

Note that, unlike the rare event simulations, we do not have a base parame-
terisation to work to and hence no need to have the W (Xi,u, v̂t−1) term in
the calculation. Of course we could have this term de�ned in terms of v̂t and
v̂t−1 but [Rubinstein and Kroese 2004] show that this is not essential and
indeed tends to introduce unnecessary noise into the convergence.

We usually wish to maximise some performance function S(x) over all
states x in data set ℵ. Denoting the maximum by γ∗, we have

γ∗ = max
x∈ℵ

S(x) (3.30)

Thus, by de�ning a family of pdfs {f(. ;v),v ∈ ν} on the data set ℵ, we
follow [Rubinstein and Kroese 2004] to associate with (3.30) the following
estimation problem

l(γ) = Pv(S(X) ≥ γ)) = EvI{S(x)>γ} (3.31)

where X is a random vector with pdf f(. ;v),v ∈ ν. To estimate l for a
certain γ close to γ∗, we can make adaptive changes to the probability density
function according to the Kullback-Leibler cross-entropy. Thus we create
a sequence f(. ;v0), f(. ;v1), f(. ;v2), . . . of pdfs that are optimised in the
direction of the optimal density and for the �xed γ̂t and v̂t−1, we derive the
γ̂t from the following program

max
v

D̂(v) = max
v

1

N

N∑
i=1

I{S(Xi)>γ̂t} ln f(Xi;v) (3.32)

One advantage that this representation has is that it is very simple to
change the base learner. If we use Gaussian distribution, we need to estimate
the mean and variance of the elite samples as

µ̂ =
1

Nelite

Nelite∑
i=1

Xi (3.33)

Σ̂ =
1

Nelite

Nelite∑
i=1

(Xi − µ̂)(Xi − µ̂)T (3.34)
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[Rubinstein and Kroese 2004] shows that if we have a �nite support discrete
distribution such as the Bernoulli distribution, then we can have the elements
of the probability vector updated according to

p̂t,ij =

∑Nelite

k=1 IS(xk)>γ̂tIxki=j∑Nelite

k=1 IS(xk)>γ̂t

(3.35)

where we use p̂t,ij is the estimated probability that the ith element of the
probability vector will equal j at iteration t. This is the method Colin Fyfe
used to solve the Iterated Prisoner's Dilemma problem. He used the
smoothing technique of [Rubinstein and Kroese 2004] so that the parameter
vector actually used at time t was

µ̃t = αµ̂t + (1− α)µ̃t−1 (3.36)

where µ̂t is the outcome of the calculation (3.33) and α = 0.2.



Chapter 4

Experiments

4.1 Setup

We will use the same setup (inputs/outputs) for most experiments except for
the Symbolic AI experiment.

4.1.1 Inputs

An example of how the track appears to human game players is shown in
Figure 4.1.

There is one marker known as a waypoint which marks the position and
orientation of the centre of the track, every metre along the track. Waypoints
can be thought of as being gates the bike crosses while following the track.
The current waypoint is the waypoint the bike is supposed to cross next in
order to follow the track.

We de�ne �forward space� to be the spatial coordinate system given by
the velocity vector of the bike and the Up (vertical) vector. Previously we
had de�ned all operations in �bike space�, de�ned by the coordinates of the
bike however we found that the bike was moving and rotating a lot along the
track. It appeared that instead of expressing the position of the waypoints
in bike space, it was better to express these in forward space.

The inputs to the ANN are:

• orientation of the bike, in forward space, given by two 3D vectors.

• positions of the centre of the track, at distances
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Figure 4.1: Inputs of the AI: positions of the centre of the track, used as
inputs to the ANN.

{0,2,5,7,10,15,20,25,30,35,40,50,60} metres, in forward space, given by
thirteen 3D vectors.

• distance between the bike and the ground.

• velocity of the bike, given by a scalar.

• a bias, set to 10.

There are two main advantages in using the forward space instead of
the bike space to transform ground samples:

1. It does not rotate in time in relation to the ground as much as the bike
transform, so it allows the ANN to more easily identify input patterns
for ground samples.
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2. Because the velocity direction information is now contained in the for-
ward space used to transform ground samples, it is now possible to
express the velocity as a scalar and not a vector and save two inputs
for the ANN.

The inputs to the networks are mixed and can be of very di�erent
magnitude; for example one input can be the height of a waypoint in cen-
timetres and vary in the range {-10000,10000} while another input may be
one component of the orientation of the bike and vary in the range {-1,1}.
For untrained ANN's, large inputs are seen as more signi�cant, i.e. carry
more weight in the �nal output, than smaller inputs. This becomes even
more signi�cant when we consider alternative architectures to multilayered
perceptron networks. It has proved to signi�cantly improve ANN's operation
to normalise all inputs in the range {-10,10}.

1. The normalisation allows untrained ANN's to initially see all inputs as
equally signi�cant; this proves to improve the training.

2. The normalisation reduces the risk of computational problems inside
the ANN's that would normally occur during operations between single
precision �oating point numbers of very di�erent magnitude.

The normalisation and bias values have been found experimentally to
produce good results. Other values would also probably produce equally
good results.

To normalise the inputs in the range {-10,10}, the minimum and max-
imum values of each input are found from the samples in the training set;
then for each sample each input is normalised in the range {-10,10} using:

i′ = 20
i− iMIN

iMAX − iMIN

− 10 (4.1)

4.1.2 Outputs

The outputs from the ANN are:

1. turn left/right.

2. target velocity.

3. rotation of the bike forward/backward.
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4. rotation of the bike left/right.

It was not totally obvious what would be the best output to expect from
the ANN's. If the outputs for the ANN are exactly the same as the controls
for a human player, then one output is the acceleration control. The ANN is
required to do some derivation work: for a given situation, the ANN has to
determine what the optimal velocity is, then determine if it must accelerate
or brake in order to reach that optimal velocity. This is not an easy task. If
the ANN is trained using the back propagation algorithm, then there might
not be training samples where the bike is to accelerate in one part of a track
after recovering from an accident. Similarly if the bike is normally braking
in a particular portion of the track, and the derivation work is not done well
and the bike is travelling at a low velocity, then the bike may brake and
come to a stop. Now if the output from the ANN is the target velocity, then
there is no more derivation work to be done by the ANN. The derivation
work is done through simple computation. This in theory allows the ANN
to concentrate on determining what is the most optimal velocity in a given
situation.

There are also problems associated with this technique: one problem
is because the ANN only determines the target velocity, important inputs
such as the bike balance may not be taken into consideration well in the �nal
acceleration decision. Another problem is because one input to the ANN is
the current velocity, one ANN trained using back propagation may reproduce
at output the velocity at input. This identity mapping is not useful in this
context.

The output of the ANN to be used in the evaluation of the target
velocity is OVel (output 2) and its value is in the range {-1,1}.

The target velocity VTarget (to be used in the evaluation of the accel-
eration/deceleration decision) is evaluated as:

VTarget =
VMax ∗ (OV el + 1)

2
(4.2)

with VMax the bike maximum velocity (32 m/s).

The acceleration/deceleration decision is evaluated as:

Acc = C1 ∗
VTarget − VCur ∗ (Dir ∗ V )

VMax

(4.3)

with VCur the current velocity, Dir ∗V the dot product between the for-
ward direction of the bike and the velocity vector direction (used to prevent
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problems when the bike is travelling backwards), and C1 an acceleration
multiplier (experimentally set to 2).

The ANN is trained at evaluating the target velocity. To prevent the
ANN reproducing at output the velocity at input, the target velocity used
while performing the back propagation algorithm is evaluated as:

VTarget = VCur ∗ (Dir ∗ V ) + C0 ∗ VMax ∗ Acc

with VCur the bike real current velocity in a given situation, Acc the asso-
ciated acceleration decision (from the training set), and C0 an acceleration
multiplier (experimentally set to 0.7).

Having the ANN trained at evaluating a target velocity proved to be
successful; the computer controlled bikes perform much better in all situa-
tions. The other outputs (1,3,4) are used directly as controls for riding the
bike.

We use the same activation function at the outputs as at the hidden
neurons, i.e. m tanh act

r
, with an activation multiplier m set to 1.33, and an

activation response r set to 5. The activation multiplier m set to 1.33 allows
the networks to easily output values in the range {-1,1}. Each control for
the bike is also in the range {-1,1}, thus the outputs from the network can
be used directly as controls for the bike and neurons in the output layer use
largely the �linear� range of the activation function. The activation response
r set to 5 allows each neuron in the network to be responsive, i.e. a small
change in the input can produce a signi�cant change in the output.

The ANN needs to be trained. One common supervised learning tech-
nique is the backpropagation algorithm.

4.2 Arti�cial Neural Networks

4.2.1 Multilayered Perceptrons and the Backpropaga-

tion Algorithm

We �rst consider an arti�cial neural network trained by the backpropagation
method. The ANN's have 48 inputs, 2 hidden layers of 40 neurons and 4
outputs. These numbers of hidden layers and neurons in the hidden layer
have been found experimentally to produce good results. Other numbers
could also probably produce equally good results.
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We are using a supervised method (backpropagation) to update the
parameters and so we require training data for which there already exists
target actions. We note that these targets (which will be the actions of a
good human player on the track) are not necessarily optimal - there may be
a better player who could beat the human player - but at least they will be
better than random and should be competitive with other humans.

The backpropagation algorithm in the context of this motocross game
requires the creation of training data made from a recording of the game
played by a good human player. The targets are the data from the human
player i.e. how much acceleration/deceleration, left/right turning and rota-
tion (forwards/backwards and left/right) of the bike was done by the human
player at that point in the track. The aim is to have the ANN's reproduce
what a good human player is doing. The human player's responses need not
be the optimal solution but a good enough solution and, of course, the ANN's
will learn any errors which the human makes.

Some training data is created by having the author playing the game
on track Long for 45 minutes (270218 samples), with an average lap times of
approximately 2 minutes 15 seconds. The author could have tried to optimise
the training set, for example he could ride in a safe manner, taking extra care
on the di�cult portions of the track, and avoiding obstacles using extra safe
distance, in order for the ANN to learn behaviours that would prevent these
accidents; instead, the author played the game in a fast but risky manner.

The backpropagation algorithm is used to train an ANN on newly
created training data. The number of iterations is set to 1000000. The
learning rate is set to decrease logarithmically from 1 ∗ 10−2 to 1 ∗ 10−5. The
training is done online at a rate of 5000 iterations a second; this allows the
user to observe the ANN as it trains. After training, the average lap time
on track Long for a computer controlled bike is found to be 2 minutes 26
seconds.

There is a 11 seconds di�erence in average lap time between the com-
puter controlled bike and the human controlled bike. The computer controls
the bike in a fast and risky manner, similar to the way the human player
controls the bike; however the computer is not yet as successful as the hu-
man player at controlling the bike and has slightly more accidents, hence the
di�erence in lap times.

Track Long is shown on Figure A.2.
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Generalisation

Of course, we do not want to train an AI only to be able to ride the bike on
a single track. We wish to train the AI in such a way that its training carries
over to other tracks, just as a human player's training and experience would
equip him/her to play on other tracks.

To that end, we check the generalisation property of our ANN; we
present our ANN (trained using backpropagation with a training set from
track Long) with track O and track A. The three tracks have di�erent fea-
tures. Track O features large hills and long straights that track Long doesn't
feature; they also share many common features like turns and small bumps.
Track A features many big turns and jumps that track Long doesn't feature.

On track O, the average lap time for the human player is 4 minutes 5
seconds and the average lap time for our ANN is 4 minutes and 20 seconds.
On track A, the average lap time for the human player is 2 minutes 53 seconds
and the average lap time for our ANN is 3 minutes and 15 seconds.

The ANN has never been trained to ride a motorbike on these particular
tracks, but still is able to do so nearly as well as the human player, because it
has been trained on another track and the three tracks have many similarities.
The di�erence in lap times between the human player and the computer is
even smaller on track O than on the original track, because track O is slightly
less challenging.

The generalisation property is con�rmed. The tracks used to test the
generalisation property are shown on Figure A.3.

Conclusion

We have shown that the backpropagation algorithm can train ANN's to ride
motorbikes in nearly the same way and nearly as well as a human player. The
AI can be trained in a relatively modest time and will emulate the person who
created the training data: if the human takes risks and rides dangerously,
the AI will learn to ride the same way; if the human opts for safety and has
a cautious ride, the AI will also ride cautiously.

Finally the ANN's trained using BP are also able to generalise from
one track to another similar track; this is an essential property for an AI
since we do not wish to have to start our training from scratch each time a
new environment is encountered. We require that, just as with humans, its
experience and success on one set of input data is carried over to be the basis
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of success in other data sets..

4.2.2 Kohonen's Self-Organizing Map

In the context of the game, the data is of dimension D, with:

D = DInput +DOutput (4.4)

DInput is the number of inputs; the inputs are the state or situation of the
bike, i.e. position, orientation and velocity of the bike relative to the track,
and information about the terrain. In the previous chapters, these were the
inputs to ANN's. There are 48 inputs.

DOutput is the number of outputs; the outputs are the decisions made
according to the state or situation of the bike, i.e. accelerate or brake, turn
left or right, and 2 rotations of the bike. In the previous chapters, these were
the output from ANN's. There are 4 outputs.

During training, the distances are evaluated and the weights are ad-
justed over the full dimensionality of the data (inputs and outputs) D. Then,
when the network is actually used inside the game to control a motorbike,
the distances are evaluated using only the �rst DInput dimensions, and the
network output is the remaining DOutput dimensions of the winning neuron's
weights.

Our SOM network is made of 272 neurons, positioned regularly on a
16 by 17 grid. Experiments showed that increasing the number of neurons
increases the training time but does not improve signi�cantly the performance
of the network.

Using this SOM network to control a motorbike in the game, the aver-
age lap time on track Long is found to be 3 minutes 11 seconds while it was
2 minutes 26 seconds when a MLP network was used.

4.2.3 Radial Basis Functions

The inputs and outputs of the RBF network are the same as those used for
the MLP network.

RBF networks require the determination of centres which may be opti-
mised by gradient descent on the error function though this is not guaranteed
to converge. Thus an alternative strategy is used in that the centres are cho-
sen randomly from the data set. The average lap time on track Long is
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approximately 3 minutes 15 seconds while it was 2 minutes 26 seconds when
a MLP network was used.

Similarly the width of the basis functions can be optimised with the
training set but again this can lead to non-convergence and so we simply
experimented with di�erent values and chose what seemed to be the most
appropriate value.

Our RBF network uses 100 centres. Experiments showed that increas-
ing the number of centres increases the training time but does not improve
signi�cantly the performance of the network.

It is possible that better performance for the RBF network can be
achieved by more carefully determining the centres for the networks. However
the time spent determining good centres for the network would increase the
time spent to create and train the network, and hence the training speed
advantage the RBF had over the MLP would be cancelled.

4.2.4 Topographic Products of Experts

The data set is the same as for SOM, as described in the previous section.

During training, the responsibilities of the experts are calculated over
the full dimensionality of the data (inputs and outputs). Then, when the
network is trained and actually used inside the game to control a motorbike,
the responsibilities of the experts are evaluated using only the �rst DInput

dimensions.

Each output is computed as:

Od =
K∑
k=1

(m(k)
d )rkn; (4.5)

Our ToPoE network uses 200 latent points and 26 basis functions.
Experiments showed that increasing the number of latent points and basis
functions increases the training time but does not improve signi�cantly the
performance of the network.

The ToPoE network is performing better than the SOM. The average
lap time on track Long is approximately 3 minutes 5 seconds while it was 3
minutes 11 seconds when a SOM network was used.

The di�erence is due to the fact that Kohonen's SOM is a quantisation
method; it does not interpolate between projections of latent points into data
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space; the method tries to �nd the best match between a given situation, and
situations it has learned, then gives the corresponding decision. The ToPoE
network is able to interpolate between many similar situations, and so the
�nal decision is an interpolation of di�erent decisions. However the ToPoE
network requires a lot more processing than all of the other methods to learn
and to make a decision.

4.3 Genetic Algorithms

As stated in Chapter 3, genetic algorithms can be considered as generic op-
timisation techniques. The problem to which we apply the genetic algorithm
is that of �nding the set of parameters (weights) for our multilayered per-
ceptron which allows the bikes to be driven as fast as possible around the
various tracks in the game. That is, instead of using the backpropagation al-
gorithm to optimise the weights, we use the genetic algorithm to optimise the
weights with the �tness of any particular set of weights being determined by
the time taken to complete a circuit: the faster the bike completes a circuit
of the track, the more �t the parameters/weights are deemed to be.

Instead of the technique for crossover discussed in Chapter 3 an al-
ternative technique for crossover has been investigated: instead of crossing
over the numbers (corresponding to the ANN's weights) from each chosen
parent chromosome at a randomly chosen point to create the child chromo-
somes, numbers from parents are averaged to create the child chromosomes.
This seems appropriate because we are working with �oating point numbers
and not binary digits and is a method which is sometimes used with Evo-
lution Strategies [Rechenberg 1994] which are designed for use with �oating
point numbers. Initial experimentation revealed that a blend of these two
techniques worked best. The particular crossover technique was chosen ran-
domly, with each technique being given equal chance, for each new child
chromosome and then applied as usual.

In the current implementation, the NPC's do not see each other. Col-
lisions have been removed between motorbikes; this has two advantages:

1. Collisions between motorbikes do not interfere any more with the eval-
uation of motorbike driving. A motorbike crashes only because of bad
driving and not because another bike crashed into it.

2. This saves some processing power and allows simulating more bikes on
a single computer.
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In early experiments, the number of generations was set to 100, with
a population of 80 ANN, elitism of 2 (number of the �ttest chromosomes
being passed directly from the parent population to the child population)
which is equal to 2.5%, a mutation rate of 0.1, a crossover rate of 0.7, and a
perturbation rate decreasing logarithmically from 0.8 to 0.008. These values
were found experimentally to give reasonable results but there seems to be
no way to derive optimal values for such parameters. In passing we note that
these algorithms are multi-parameterized so that if we change one parameter,
this may have a knock-on e�ect on the optimal range of a second parameter.
Such search spaces are di�cult to evaluate algorithmically and so heuristics
are mainly used to �nd optimal ranges for parameters.

There was a simple reason why the perturbation was set high at the
beginning and low at the end: let us consider an ANN attempting to jump
bumps; if for example the bike goes at 30 km/h, then the bike can jump
over perhaps one large bump; if the bike goes at 45 km/h, then the bike
may be able to jump two large bumps at once. However if the bike goes
at 35 km/h, then the bike may land on the ascending part of the second
bump and is likely to crash. It was assumed that if the perturbation was
not set high at the beginning, then an ANN which is successfully jumping
one bump would not be able to attempt jumping two bumps at once; any
increase in speed would only take it into the crash regime not into the second
safe regime. The perturbation was set low at the end of the training, because
as we are approaching the solution, we don't want to deviate too much from
this solution; all that is required at this stage is some �ne-tuning which we
get from a much smaller perturbation parameter.

The early experiments showed that most of the improvement happened
towards the beginning of evolution, when the perturbation was approximately
equal to 0.3. Furthermore, we want the AI to improve continuously, and not
stop improving after a given number of generations. Because the neurons
make use of a non-linear function (as the activation function), a small change
in a weight inside the ANN can still produce a large enough change on the
output of the ANN. Some small changes inside the ANN can still allow it
to change from one safe regime to another safe regime in the case of doing
jumps. This is why the perturbation rate was �nally set constant at 0.3.

The intelligence and experience are shared by more than one bike.
Originally 6 bikes were on the track and the same number of ANN were thus
evaluated for �tness at any given time. By disabling features, like collision
between bikes and the sound, it was �nally possible to have 10 bikes on the
track at the same time.
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One constraint while evolving ANN's with the GA is processing time.
It takes time to evaluate each and every individual. Some �t individuals
can be evaluated as being un�t because of bad circumstances if individuals
are evaluated for too short a time, and reciprocally some un�t individuals
can be evaluated as being �t. Finally it was empirically found that we had
accurate results from the score function and hence valuable evolution when
we evaluate all individuals for 10 minutes.

The early population size was 80, with elitism of 2. A large population
size allows for diversity in the population; however it takes time to evaluate
each generation of population. Similar or better results were obtained by
reducing the population size to 20, which allows for more generations and
hence more evolution, for the same computer processing time.

The �tness of individuals is evaluated using a score function. The score
is calculated as follows:

• vPassWayPointBonus is a bonus for passing through a waypoint.

• vMissedWayPointBonus is a bonus/penalty (i.e. normally negative)
for missing a waypoint.

• vCrashBonus is a bonus/penalty (i.e. normally negative) for crashing
the bike.

• vRespawnBonus is a bonus/penalty (i.e. normally negative) for being
respawn by the game engine after failing to cross the next waypoint, or
after driving o� track, for a given time (9 seconds).

• vFinalDistFromWayPointBonusMultiplier is a bonus/penalty
(i.e. normally negative) for every metre away from the centre of the
next waypoint.

The bonuses/penalties are associated with events; the �tness of each
individual is initially set to zero; when an event occurs, the score or �t-
ness of the individual is incremented by the corresponding bonus/penalty;
all bikes/individuals are evaluated for the same duration vTestTime (eval-
uation period). The individual who has accumulated the greatest bonuses or
the least penalties is evaluated as being the �ttest.

Early experiments have shown some interesting behaviours:

• If vPassWayPointBonus is too high and vRespawnBonus not low
enough (penalty not high enough), the ANN tends to learn to instantly
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crash the bike immediately after the bike has been spawned, relying on
the fact that the game engine spawns the bike on the track in the right
direction after a crash.

• If vCrashBonus is too low (penalty too high), the ANN tends to learn
to ride away from the track, where it is �at and safer.

• If vTestTime is too high, then the ANN tends to control the bike in
a very slow and safe manner, in order not to crash and not put itself
in an unrecoverable situation.

• If vTestTime is too low, then the ANN tends to control the bike in a
fast but risky manner.

After experimentation, the following values have been determined as suitable:

• vPassWayPointBonus = 10

• vMissedWayPointBonus = -1

• vCrashBonus = -300

• vRespawnBonus = -300

• vTestTime = 600 seconds

The following values have been determined as suitable for the GA algorithm:

• vMutationRate = 0.2

• vMaxPerturbation = 0.3 (constant)

4.3.1 Training

Below are the graphs showing the �tness (Figure 4.2) and lap times (Figure
4.3) of ANN's trained using the GA to ride motorbikes on track Long during
nearly 5 days. The weights inside the ANN's are initialised with random
values in the range {-1,1}.
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Training Short Experiment
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Figure 4.2: Fitness of the AI, GA used for training networks. Track Long.

The time is represented in periods of 10 minutes. This is the time
required to evaluate a group of individuals.

The plain lines represent results of two experiments with the same
initial conditions. Because of the stochastic nature of the genetic algorithm,
we do not obtain exactly the same results each time we run the algorithm;
the two experiments (referenced as GA1 and GA2 in Graphs 4.2 and 4.3)
are representative of the results which we achieve each time. We can see
that the algorithm is working, the �tness is increasing and the lap times are
decreasing with time.

The two graphs, �tness and lap times, do not exactly follow each other;
the �tness function is a function of how fast the ANN's are riding motorbikes
along the track; it is also a function of how good the ANN's are following
the track and how good they are at avoiding crashes.
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Training Short Experiment
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Figure 4.3: Lap Times of the corresponding bikes, GA used for training
networks. Track Long.

The ANN's have to give four outputs corresponding to the four controls
to ride the motorbikes; two of these outputs, the rotation of the motorbikes,
are optional and can be left to their default values, zero; a human player can
play the game very well without the need for these additional controls. We
investigated whether it was more di�cult to train networks to respond with
4 outputs than only 2 outputs to see if networks trained to give 2 outputs
would evolve faster than networks trained to give 4 outputs. The doted lines
(referenced as GA2O's in Graphs 4.2 and 4.3) represent results of the same
experiments with the same initial conditions, except ANN's are giving only 2
outputs. The graphs show that these networks giving 2 outputs do not evolve
as fast as the other networks giving 4 outputs. The extra controls were added
to make it easier for human players to control the bikes, especially when the
bikes are in the air. The experiments show that these controls also make it
easier for the computer to control the bikes.

We can see that for the doted lines, the �tness is slowly increasing,
but the lap times do not improve much; this means that the improvement
in �tness is due to a reduction in the number of crashes or respawns. The
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�tness function is such that networks �rst learn to follow the track and avoid
crashes, then learn how to improve lap times by driving faster on portions of
the track.

We see that the ANN's are improving but generally do not perform as
well as other ANN's trained using backpropagation. After more than 116
hours of training, the average lap time is approximately 5 minutes on track
Long, while it was 2 minutes 26 seconds when the Backpropagation Algorithm
was used to train a network. It seems that the lap times are improving,
reducing at a rate of approximately 0.6 second per hour of evolution. It will
take a long time before networks trained using the GA perform as well as
other networks trained using the BP algorithm.

During the last year of research, the student had access to better com-
puters (Intel Quad Core 2.4 GHZ, as opposed to AMD Athlon 1.7 GHZ), the
program was changed to allow the simulation to run faster than realtime,
and to run as a screen saver. On a Intel Quad Core 2.4 GHZ, the simula-
tion ran 4.5 times faster than realtime. Many computers were used at night
and weekends for weeks to run the experiments. These longer experiments
will be referred to, in the rest of thesis, as the new experiments. The origi-
nal experiments demonstrate short time evolution and the new experiments
demonstrate long time evolution.

The initial conditions were slightly di�erent, with now all evolution
experiments starting from the same random population. Two experiments
with the GA were carried out for 1666 hours, and the results are shown in
Figures 4.4 and 4.5.
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Training Long Experiment
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Figure 4.4: New experiments, �tness of the AI, GA used for training net-
works. Track Long.
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Training Long Experiment
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Figure 4.5: New experiments, lap times of the corresponding bikes, GA used
for training networks. Track Long.

We can see that after a very long training, 1666 hours, the average lap
time are approximately 2 minutes 14 seconds and 2 minutes 40 seconds on
track Long, while it was 2 minutes 26 seconds when the Backpropagation
Algorithm was used to train a network. In one AI experiment (referenced
as GA1 in Figures 4.4 and 4.5), the networks trained using the GA perform
better than networks trained using the BP algorithm.

The experiments were run for another 1666 hours; the results are shown
in Figures 4.6 and 4.7.
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Figure 4.6: Degenerating AI, �tness of the AI, GA used for training networks.
Track Long.
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Training Long Experiment
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Figure 4.7: Degenerating AI, lap times of the corresponding bikes, GA used
for training networks. Track Long.

The �tness tends to increase and lap times tend to decrease; note how-
ever from the graphs that the �tness can also decrease from one generation
to the next.

The GA makes intensive use of random numbers in the epoch process.
Fit individuals are given more chance to reproduce but because random num-
bers are used in the selection process, it is possible that during one epoch
only the worst individuals are selected to reproduce. It is also possible that �t
individuals are evaluated as un�t - again the stochastic nature of the experi-
ence allows this. In the above graphs, after 10000 generations, the population
seems to be slowly degenerating, with individuals after 20000 generations be-
ing on average less �t than individuals after 10000 generations.

The degeneration may be due to the perturbation not decreasing with
time and the population size being too small. These problems can certainly
be minimised using a decreasing perturbation and a larger population size;
however increasing the population size would increase the time required to
evaluate each population and also it may be di�cult to determine how exactly
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the perturbation should be decreased with time.

4.3.2 Optimisation

We now experiment with starting the evolution from a population of di�erent
ANN's already trained using BP. One major problem with doing crossover
with ANN's is that each neuron has a functionality or part of the behaviour
(for example turning right), and while doing crossover, the child chromosome
may end up having twice the required number of neurons for a given function-
ality (turning right) and no neurons for another functionality (turning left).
An attempt has been made to reorder neurons in the parent ANN's, according
to similarities and apparent functionalities, before performing crossover, in
order to reduce this problem. This proved not to be successful, and ANN's
generated by the crossover of two di�erent ANN's still produced bad ran-
dom behaviours. Eventually, because of elitism, and because crossover is not
always performed, the population converges towards one individual ANN,
which is not always the best one, and diversity in the population is lost.

One way to solve the problem is to start with one individual ANN al-
ready trained with the backpropagation algorithm, and mutate it to generate
a starting population of di�erently mutated individuals. This proved to be
very successful.

An extension of this is to start with many di�erent individuals, give
a unique identi�er corresponding to a species to each individual, then only
perform crossover between two individuals if the two individuals have the
same identi�er or belong to the same species. During the �rst epoch, no
crossover can take place because all individuals are di�erent and belong to
di�erent species; then, because of elitism and mutation, more than one in-
dividual from the same species are present in the population, and more and
more crossovers can take place between slightly di�erent individuals from
the same species, until eventually all individuals in the population belong to
the same species. This proved to be even more successful, and this is the
technique we now use in this section. In the continuation, we will call each
species a sub AI.

Some training data is created by having the author playing the game
on 5 di�erent tracks, including track Long, for a total of 51 minutes (308421
samples). 16 ANN's are trained using 1

16
of the training set and 4 ANN's are

trained using the full training set. Four ANN's are trained using the same
entire training set because the random weight initialisation means that after
training, each sub AI will behave slightly di�erently from the others.
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These 20 trained ANN's are used as a starting population. After a few
generations, one ANN eventually wins and all individuals in the population
are mutated versions of this winning individual.

Below are the graphs (Figures 4.8 and 4.9) showing the �tness and
lap times of ANN's optimised using the GA to ride motorbikes on track
Long during a long time, nearly 21 days. The population size was 20. Two
experiments have been carried out, both with elitism set to 4.

Optimisation Short Experiment
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Figure 4.8: Fitness of the AI, GA used for optimising networks. Track Long.
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Optimisation Short Experiment
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Figure 4.9: Lap Times of the corresponding bikes, GA used for optimising
networks. Track Long.

We see that the optimisation is working. The average �tness of the
population increases from approximately 15000 to 92000. The average lap
times decreases from 3 minutes 5 seconds to 2 minutes 22 seconds, faster than
an ANN trained using the BP and training data from track Long (2 minutes
26 seconds). The average performance at the beginning of the evolution is
low because the population initially contains many individuals trained to ride
motorbikes on very di�erent tracks than track Long. The two experiments
have slightly di�erent outcomes: in the �rst experiment ANN with identi�er
9 was the winner, in the second experiment ANN with identi�er 6 was the
winner.

Some longer optimising experiments are carried out (Figures 4.10 and
4.11) in order to investigate whether the simulations give stable results or if
there would be the degeneration e�ect which we saw previously.
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Optimisation Long Experiment
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Figure 4.10: New experiment, �tness of the AI, GA used for optimising
networks. Track Long.
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Optimisation Long Experiment
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Figure 4.11: New experiment, lap Times of the corresponding bikes, GA used
for optimising networks. Track Long.

The experiment is successful, with now bikes performing faster than
when the BP algorithm was used to train the networks, 2 minutes 14 seconds
and 2 minutes 9 seconds per lap on average at the end of the experiment
compared to 2 minutes 26 seconds when the BP algorithm was used to train
the network. Also there seems to be less degeneration this time.

4.3.3 Conclusion

The Genetic Algorithm is an optimisation process, which can be used to
train ANN's, but it takes a long time for the evolution to take place and the
individuals produced are not as �t as individuals produced using a supervised
learning technique like the Backpropagation Algorithm.

The GA seem to work better at optimising a population of already
trained ANN's. The optimisation takes a long time but at the end the average
lap times are better than lap times from individuals trained using only the
Backpropagation Algorithm.
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New long experiments showed slightly di�erent results, with the pop-
ulation slowly degenerating during training and good performance during
optimising.

One big advantage in this training technique is that the technique can
produce individuals performing better than a human player.

One disadvantage of this technique is that it takes a long time to per-
form. Another disadvantage is that the evolution is not very predictable and
the evolution can sometimes fail to function properly.

4.4 Ensemble Methods

4.4.1 Bagging

Above, the ANN was trained using training data made from a recording of
the game being played by a good human player. The data was made from the
recording of the author playing the game on many di�erent motocross tracks.
We now investigate whether bagging can improve the AI's performance. As
stated earlier, each bag contains the same number of samples as the original
data set but the samples are drawn randomly with replacement from the
data set. The number of bags is the only parameter in this method: we have
typically used 10 bags in the experiments below.

Some early experiments were done using ten ANN's. The early exper-
iments showed that:

1. With w = 0, the combined output was a smooth output, and the
computer controlled bikes tended to ride in a slow but safe manner.

2. With w = 1 (similar to �bumping� [Heskes 1997]), the combined output
was a decisive output and the computer controlled bikes tended to ride
in a fast but risky manner.

These early experiments showed that this w parameter can allow us to
adjust the behaviour of a computer controlled bike, and adjust the perfor-
mance so that it can match that of the human player.

More experiments were carried out; eight ANN's are trained on eight
separate bags from training set 920 and another ANN is trained using the
entire training set. Equation 3.15 is used to combine the outputs of the eight
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ANN's with various values for w. The results are summarised in the following
table (4.1) and graphs (4.12).

AI Description Lap Time Fitness
0 trained on one bag 02:40.3 41378
1 trained on one bag 02:34.9 43609
2 trained on one bag 02:25.5 56529
3 trained on one bag 02:35.8 48222
4 trained on one bag 02:39.7 37439
5 trained on one bag 02:35.5 33523
6 trained on one bag 02:29.4 57035
7 trained on one bag 02:35.1 46433
8 average decision, AI 0 to 7 02:35.4 45321
9 trained on entire set 02:30.8 51908

N/A average performance, 0 to 7 02:34.5 45521
0b av{0,7}*1.000+win{0,7}*0.000 02:32.2 48404
1b av{0,7}*0.889+win{0,7}*0.111 02:31.6 45300
2b av{0,7}*0.778+win{0,7}*0.222 02:31.2 48621
3b av{0,7}*0.667+win{0,7}*0.333 02:28.8 52974
4b av{0,7}*0.556+win{0,7}*0.444 02:30.3 48330
5b av{0,7}*0.444+win{0,7}*0.556 02:30.7 44299
6b av{0,7}*0.333+win{0,7}*0.667 02:34.6 42506
7b av{0,7}*0.222+win{0,7}*0.778 02:36.5 35694
8b av{0,7}*0.111+win{0,7}*0.889 02:46.4 25961
9b av{0,7}*0.000+win{0,7}*1.000 02:38.8 33743

Table 4.1: Bagging, training set 920
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Figure 4.12: Bagging, training set 920. The red line represents the average
performance of the �rst 8 AI's trained on separate bags and the dark blue
line represents the performance of the combined 8 AI's, with the winning
parameter w varying from 0 to 1.

The tracks used in Training Set 920 are shown on Figure A.1.

The evaluation period in this section is 40 minutes; therefore each
laptime and �tness given in this section are average laptime and evaluated
�tness of one AI during a 40 minutes evaluation period. In previous sections
the evaluation period was 10 minutes. In this section each �tness or score of
an AI is evaluated during a 40 minutes evaluation period and then is divided
by 4 for easy comparison with the other experiments. Evaluating each AI for
a longer time makes the evaluations more accurate.

There are di�erences in measured performances between the �rst eight
AI's, because each of these AI's is trained using a di�erent bag. There
are also di�erences in measured performances between all AI's because each
ANN is initialised using di�erent random numbers, and the racing is not very
predictable; fast bikes tend to ride in a risky manner, with a high but not
very predictable number of crashes during a race.

As an example, in the previous table, the performance of AI 8 should
match exactly the performance of AI 0b; however the performances are dif-
ferent.

One way to obtain more accurate and reliable results is to carry out
experiments with a higher number of AI's, for a longer time.

We can see that most AI's trained on bags do not perform as well as
one AI trained on the entire training set. The average lap time for AI's 0
to 7 is 2 minutes 35.4 seconds and the performance for an AI trained on the
entire training set is 2 minutes 30.8 seconds. When combined with equation
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3.15, the combined decisions of AI's 0 to 7 can perform better than an AI
trained on the entire training set; with w set equal to 0.333, the average lap
time is 2 minutes 28.8 seconds, 2 seconds faster than one AI trained on the
entire training set, and 5.7 seconds faster than the average performance of
the combined AI's.

The same experiment is carried out with training set Long, containing
only training samples from track Long. The results are summarised in the
following table (4.2) and graphs (4.13).

AI Description Lap Time Fitness
AI Description Lap Time Fitness
0c trained on one bag 02:20.7 67265
1c trained on one bag 02:23.7 63609
2c trained on one bag 02:21.3 70278
3c trained on one bag 02:24.6 64660
4c trained on one bag 02:18.2 74336
5c trained on one bag 02:18.7 70899
6c trained on one bag 02:31.2 52389
7c trained on one bag 02:17.6 63342
8c average decision, AI 0c to 7c 02:16.3 76832
9c trained on entire set 02:22.2 71699
N/A average performance, 0c to 7c 02:22.0 65847
0d av{0c,7c}*1.000+win{0c,7c}*0.000 02:23.5 67466
1d av{0c,7c}*0.889+win{0c,7c}*0.111 02:16.5 75986
2d av{0c,7c}*0.778+win{0c,7c}*0.222 02:19.1 73748
3d av{0c,7c}*0.667+win{0c,7c}*0.333 02:17.5 78263
4d av{0c,7c}*0.556+win{0c,7c}*0.444 02:15.1 78328
5d av{0c,7c}*0.444+win{0c,7c}*0.556 02:18.8 70001
6d av{0c,7c}*0.333+win{0c,7c}*0.667 02:23.8 63756
7d av{0c,7c}*0.222+win{0c,7c}*0.778 02:28.8 56841
8d av{0c,7c}*0.111+win{0c,7c}*0.889 02:34.2 51154
9d av{0c,7c}*0.000+win{0c,7c}*1.000 02:40.7 41184

Table 4.2: Bagging, training set Long
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Figure 4.13: Bagging, training set Long. The red line represents the average
performance of the �rst 8 AI's trained on separate bags and the dark blue
line represents the performance of the combined 8 AI's, with the winning
parameter w varying from 0 to 1.

With training set Long, on average AI's trained on bags perform as
well as one AI trained on the entire training set (approximately 2 minutes
22.0 seconds lap time); this is because the training set is very large (270218
samples) and contains more than enough samples to train the ANN's; the
recording rate is high (100 samples a second), with very small di�erences
between two adjacent samples; a bike travelling at 100 km/h would only
travel 27.78 cm in 1

100
of a second.

The combined decisions of AI's 0c to 7c can perform better than an AI
trained on the entire training set; with w set equal to 0.444, the average lap
time is 2 minutes 15.1 seconds, 6.9 seconds faster than an AI trained on the
entire training set, and 6.7 seconds faster than the average performance of
the combined AI's.

Finally, we want to experiment with training set 920 in order to in-
vestigate whether bagging itself is really having an e�ect. We do this by
having each of the eight AI's trained on a separate 1

8
of the training set and

comparing the results with the bagged AI's. The results are summarised in
the following table (4.3) and graphs (4.14).
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AI Description Lap Time Fitness
0e trained on 1st 1/8 of set 03:01.4 27532
1e trained on 2nd 1/8 of set 03:01.4 29659
2e trained on 3rd 1/8 of set 03:15.8 13884
3e trained on 4th 1/8 of set 04:22.8 -2142
4e trained on 5th 1/8 of set 02:57.6 25356
5e trained on 6th 1/8 of set 02:33.1 48289
6e trained on 7th 1/8 of set 03:05.9 8980
7e trained on 8th 1/8 of set 04:32.8 -46355
N/A average performance, 0e to 7e 03:21.3 13150
N/A average performance, 0 to 7 02:34.5 45521
0f av{0e,7e}*1.000+win{0e,7e}*0.000 02:40.7 44195
1f av{0e,7e}*0.889+win{0e,7e}*0.111 02:51.2 30528
2f av{0e,7e}*0.778+win{0e,7e}*0.222 02:44.3 32116
3f av{0e,7e}*0.667+win{0e,7e}*0.333 02:46.6 24488
4f av{0e,7e}*0.556+win{0e,7e}*0.444 02:59.0 20132
5f av{0e,7e}*0.444+win{0e,7e}*0.556 03:04.9 3175
6f av{0e,7e}*0.333+win{0e,7e}*0.667 03:29.9 -10961
7f av{0e,7e}*0.222+win{0e,7e}*0.778 03:43.8 -23237
8f av{0e,7e}*0.111+win{0e,7e}*0.889 04:08.2 -34259
9f av{0e,7e}*0.000+win{0e,7e}*1.000 04:42.5 -49772

Table 4.3: No Bagging, training set 920

Figure 4.14: No Bagging, training set 920. The red line represents the average
performance of the �rst 8 AI's trained on separate subsets and the dark blue
line represents the performance of the combined 8 AI's, with the winning
parameter w varying from 0 to 1.

As expected, the average performance of the �rst eight AI's is lower
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than that of AI's trained on separate bags and much lower than that of an
AI trained on the entire set. The combined decisions of AI's 0e to 7e can
perform better than each individual AI, but not as well as an AI trained on
the entire training set; with w set equal to 0, the average lap time is 2 minutes
40.7 seconds, 9.9 seconds slower than an AI trained on the entire training
set, but 40.6 seconds faster than the average performance of the combined
AI's.

Discussion

Bagging allows us to improve the performance of an AI, by combining out-
puts from a number of di�erent ANN's, at the expense of more processing
requirements. The signal has to be propagated through more than one ANN.

The AI is also adjustable; it may be possible to propagate the signal
through various numbers of ANN's and combine the outputs, hence adjusting
the performance and the the processing power required by the AI. This can
be useful so that the AI can adapt to the performance of a human player, for
maximum playing enjoyment, and also prevent the game from slowing down,
by reducing at times the processing required by the AI when other parts of
the computer program require processing.

4.4.2 Boosting

The �rst algorithm which we tried was not e�cient; this algorithm stored
an average error value for each of the training samples, which is not memory
e�cient, and made use of roulette wheel selection to choose the samples
according to the average error, which is not e�cient in terms of processing
time. There was a time during which the average errors were computed,
and a time during which the average errors were used. The algorithm was
complicated, was making use of many parameters and was hard to tune.

It appeared that because the learning rate is low, the ANN does not
change very much with time, and it is possible to use the instantaneous
error, and not the average error. Instead of selecting samples according to
the error the sample produces, it is possible to select samples randomly,
evaluate the error, and modify the instantaneous learning rate according to
this instantaneous error. This new algorithm is much more e�cient and
produces very similar results.

It was assumed that boosting would be bene�cial, however we also
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want to experiment with anti-boosting. The instantaneous learning rate γi
is calculated as:

γi = γo ∗ βi; (4.6)

with γo the original learning rate and βi the instantaneous boosting which is
calculated as:

βi = eβo∗abs(ϵi)/ϵa ; (4.7)

with βo the base boosting parameter, varying between -1 and 1, ϵi the instan-
taneous error and ϵa the average error over all samples. The instantaneous
error is the di�erence between the desired output and the output given by
the ANN. The average error over all samples is calculated incrementally as:

ϵa = ϵa ∗ (1− α) + abs(ϵi) ∗ α; (4.8)

with α a small value (0.01).

The experiments were done using training set Long, with the boosting
parameter varying between -1 and 1. The performance was measured on
track Long. The results are shown in the following graphs (4.15):
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Figure 4.15: Boosting {-1,1} The red line represents the average performance
of AI's trained without any boosting or anti-boosting. The dark blue line
represents the performance of an AI with the boosting parameter βo varying
from -1 to 1.

The performance does not vary smoothly with the boosting parameter.
It seems that the performance may be increased with a boosting parameter
somewhere in the range -0.3 to -0.1. This is investigated in the following
graphs (4.16):
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Figure 4.16: Boosting {-0.3,-0.1} The red line represents the average per-
formance of AI's trained without any boosting or anti-boosting. The dark
blue line represents the performance of an AI with the boosting parameter
βo varying from -0.3 to -0.1.

What could have been peaks in performance proves to be nothing but
noise due to ANN initialisations and the inherent stochasticity within the
racing.
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Discussion

Boosting is a method designed to emphasise data samples which are more
di�cult than most to classify or regress on. We have investigated boost-
ing in the context of the motocross game but have been disappointed with
the results. Boosting and anti-boosting prove to have a negative e�ect on
the training of the AI; they also add complexity to the training algorithm.
Therefore we do not recommend their use for computer games.

4.4.3 Conclusion

We have experimented with bagging and boosting and found neither to be
very attractive in the context of this computer game, Motocross The
Force. In the literature, it is said that bagging reduces error by tackling
the variance in a predictor while boosting reduces error by tackling the bias
in a predictor. The poor results from boosting in particular seem to sug-
gest that our base predictor, the multilayered perceptron, is indeed powerful
enough to learn how to control the bikes in the motocross game. This further
strengthens our belief that a single layer of hidden neurons is su�cient for
this game.

The results from bagging are more disappointing: we do �nd that the
bagged AI predictors are better than predictors trained on only a part of the
training set, however even combining these predictors is not more powerful
than training an AI on the whole data set and the latter method is less
computationally intensive.

Therefore our overall conclusion is that ensemble methods do not seem
to be appropriate for this particular game and we conjecture that this will be
true for similar games. However this conjecture must be empirically tested
by other researchers.

4.5 The Cross Entropy Method

For CE, we want to use a Gaussian distribution, and estimate the mean and
variance of the elite individuals weights as detailed in equations (3.33) and
(3.34). According to these equations there is a requirement to maintain a
population of elite individuals; the New Evolution Technique introduced in
Chapter 6 already maintains a population of elite individuals.
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Our CE implementation therefore is identical to our NE implementa-
tion, except the creation of new individuals. In NE and GA, the creation of
new individuals involves:

1. Select two members from the current population. The chance of being
selected is proportional to the chromosomes' �tness.

2. With probability, Cr, the crossover rate, cross over the numbers from
each chosen parent chromosome at a randomly chosen point to create
the child chromosomes.

3. With probability, Mr, the mutation rate, modify the chosen child chro-
mosomes' numbers by a perturbation amount.

For our CE implementation, the creation of new individuals involves equa-
tions (3.33) and (3.34).

There is a time during which the population has not yet converged to-
wards one individual; the population contains individuals with di�erent ID's.
We know from our experience with the GA that creating child individuals
from parents with di�erent ID's (di�erent species) generally produces to-
tally un�t individuals; therefore when the population has not yet converged,
equations (3.33) and (3.34) are not used to generate child individuals; only
mutation applied on two parents is used to create children.

After the population has converged, the individuals in the population
may be very similar and di�er only by a few weights; the standard deviation
may be non-zero only for a few weights and the CE technique may end up
optimising only the few weights which have non-zero standard deviation,
and the elite population may not evolve well. To avoid this problem, when a
standard deviation is found to be zero, then it can be set to an arbitrary small
value. In our implementation, when a standard deviation is found to be zero,
then it is set to the average of all originally non-zero standard deviations.
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4.5.1 Training

Training Short Experiment
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Figure 4.17: Fitness of the AI, Cross Entropy Method used for training
networks. Cross Entropy in light blue, Cross Entropy with Perturbation in
dark blue. Track Long.



4.5 The Cross Entropy Method 85

Training Short Experiment
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Figure 4.18: Lap times of the corresponding bikes, Cross Entropy Method
used for training networks. Cross Entropy in light blue, Cross Entropy with
Perturbation in dark blue. Track Long.

We can see from these experiments (Figures 4.17 and 4.18) that with the
CE Method, the population converges too quickly towards a local optimum.
This can be avoided by adding perturbation to the newly created individuals
like in the GA. Cross Entropy with Perturbation (CEP) performs better than
GA.

Some new longer optimising experiments are carried out in order to
investigate the stability of the method.
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Training Long Experiment
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Figure 4.19: New experiment, �tness of the AI, Cross Entropy Method used
for training networks. Cross Entropy in light blue, Cross Entropy with Per-
turbation in dark blue. Track Long.
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Training Long Experiment
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Figure 4.20: New experiment, lap times of the corresponding bikes, Cross
Entropy Method used for training networks. Cross Entropy in light blue,
Cross Entropy with Perturbation in dark blue. Track Long.

We can see from these new experiments (Figures 4.19 and 4.20) that
that CEP performed better than GA with the �tness increasing steadily, the
lap times decreasing steadily and no degeneration, with average lap times 2
minutes 15 seconds versus 2 minutes 40 seconds for GA.
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4.5.2 Optimisation

Optimisation Short Experiment
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Figure 4.21: Fitness of the AI, Cross Entropy Method used for optimising
networks. Cross Entropy in light blue, Cross Entropy with Perturbation in
dark blue. Track Long.
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Optimisation Short Experiment
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Figure 4.22: Lap times of the corresponding bikes, Cross Entropy Method
used for optimising networks. Cross Entropy in light blue, Cross Entropy
with Perturbation in dark blue. Track Long.

The population converged towards one individual and CE was e�ectively
used, after approximately 20 generations (t=20). This experiment, as shown
in Figures 4.21 and 4.22, proved to be successful, with CEP performing better
than GA.

Some new longer optimising experiments are carried out.
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Optimisation Long Experiment
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Figure 4.23: New experiment, �tness of the AI, Cross Entropy Method used
for optimising networks. Cross Entropy in light blue, Cross Entropy with
Perturbation in dark blue. Track Long.
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Optimisation Long Experiment
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Figure 4.24: New experiment, lap times of the corresponding bikes, Cross
Entropy Method used for optimising networks. Cross Entropy in light blue,
Cross Entropy with Perturbation in dark blue. Track Long.

We can see from Figures 4.23 and 4.24 that CEP is performing slightly
better than GA; there are times when the evolution seems to slightly break
(�tness falls sharply) and other times when there seems to be no evolution
(�tness constant over a period of time). After the completion of the optimis-
ing phase, average lap time is 2 minutes 13 seconds.

4.5.3 Conclusion

Cross Entropy with perturbation performs better and is more steady and
predictable than GA. There are still some small breaks in �tness and lap
times.
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4.6 Symbolic AI

Symbolic AI is the kind of AI traditionally used in the game industry. The
game developer fully describes the behaviour of the non-player characters
(NPC) with a set of �if, then , else� statements or a �nite state machine
(FSM), using a programming language.

In the context of the motocross game, the symbolic AI is implemented
in a project called Minimal because it is the simplest and more minimalist
implementation of an AI and can be used as a starting point to develop a
more sophisticated AI DLL for the game.

Figure 4.25: AI Class SMinimal, method DecisionMaking.
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Figure 4.25 shows some code from the symbolic AI class: we clearly
see that it follows the �if, then , else� template described above. The code
works as follows:

• a target waypoint position is obtained from the game engine, 30 metres
in front of the bike.

• the bike and target direction are calculated.

• the velocity is calculated.

• dot and cross products are calculated between bike and target direc-
tions.

• if the bike is facing towards target (the dot product between bike and
target directions is more than 0.5).

� turn towards target, according to cross product.

� maintain high speed (35m/s), reduce speed if o� target.

• else (bike is not facing towards target)

� maximum turn towards target.

� maintain low speed (10m/s).

• set (optional) rotation controls to zero.

Using this very simple code, the average lap time on track long is 2
min 48 seconds; it is faster than ToPoE and SOM implementations (3 min
5 seconds and 3 minutes 11 seconds), but slower than a MLP network (2
minutes 26 seconds).

One reason why this implementation does not perform as well as a MLP
network is that it takes only one waypoint position to make the decision, as
opposed to 13 waypoint positions for the MLP implementation. The AI
makes decisions using a lot less information than other implementations. It
would be possible to make the AI take more information as input, however
the code would become complicated and would require setting many internal
parameters; the resulting AI would be hard to adjust and maintain.

It would also be possible to add special markers along the track, to
help the AI by telling it what must be the target velocities on portions of the
track; this would be easy to implement but would require additional work
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from the track designers and would require to be replicated for each new
track.

Using evolutionary techniques, it would be possible to have the AI
evolve with time as in Sections 4.3.2 and 4.5.2 by evolving the internal pa-
rameters. Symbolic AI would have less internal parameters than a MLP
networks and as a result would be faster to optimize.

4.7 Conclusion

The experiments with SOM, RBF, and ToPoE networks prove not to be very
successful. The bikes are not able to make decisive decisions in terms of ac-
celerating and turning, specially RBF networks, and are performing poorly
compared to bikes controlled by MLP networks. A major problem with these
kinds of networks is that their internal operations prevent them from di�er-
entiating between important and not so important inputs. All inputs to the
networks are considered as equally important by these networks if the inputs
are normalised, and large inputs are considered more important than smaller
inputs if inputs are not normalised. This is di�erent from MLP networks,
where neurons in the hidden layer are connected with connections of various
strength to the neurons in the input layer, hence allowing the networks to
evaluate the di�erence between important and unimportant inputs, even if
inputs are not normalised.

The experiments with Ensemble Methods (Bagging and Boosting)
prove also not to be very successful.

Cross Entropy with perturbation performs better and is more steady
and predictable than GA.

A simple symbolic AI performs better than SOM, RBF, and ToPoE
networks but not as well as MLP. A more complicated symbolic implementa-
tion taking more information to make decisions would likely perform better
but would be more di�cult to implement and maintain.
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The experiments are summarised in the following table123:

AI Lap Time Training Time
Good Human Player 02:15 Many hours
MLP trained using BP and training data1 02:26 A few seconds
Kohonen SOM trained using training data1 03:11 A few seconds
RBF trained using training data1 03:15 A few seconds
ToPoE trained using training data1 03:05 A few seconds
MLP trained using GA 02:40 3333 hours
MLP optimised using GA2 02:22 3333 hours
MLP trained using train. data1 and Bagging 02:15 A few seconds
MLP trained using t. data1 and Boosting 02:26 A few seconds
MLP trained using CEP 02:15 3333 hours
MLP optimised using CEP2 02:13 3333 hours
Symbolic AI 02:48 None
MLP trained using NE3 02:07 3333 hours
MLP optimised using NE23 02:05 3333 hours

Table 4.4: Experiments summary, track Long

1The training data is made from the recording of the good human player playing the

game.
2Optimisation processes start with an MLP originally trained using BP and a training

data.
3New Evolution technique introduced in Chapter 6.
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Chapter 5

AI SDK

In the research community, it happens often that one researcher presents a
new algorithm or AI or data mining technique, and presents the technique
in the context of one particular problem or application. The applications
used are often very di�erent. It appears that there is a need in the research
community for common platforms to evaluate and benchmark individual AI
techniques. This has been discussed during various conferences at which
papers ([Chaperot and Fyfe 2005],[Chaperot and Fyfe 2006b],[Chaperot and
Fyfe 2006a] and [Chaperot and Fyfe 2007]) were presented.

For data mining it is common practice to use standard datasets to eval-
uate and compare di�erent classi�cation techniques (see for example [Michie
et al. 1994]). For video games, there seems to be a need for more common
platforms to compare AI techniques.

Splitting the motocross game, between the game engine on one side
and the AI on the other side, allows for easier AI code maintenance and
implementation, and changes the game into a common open platform for
many developers and researchers to test and compare di�erent techniques.
The game and SDK have been released and are now available for download
at the following address [Chaperot 2009]:

http://cis.uws.ac.uk/benoit.chaperot

In the following sections we detail how we have split the game, and
how to implement new AI for the game.
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5.1 Original Game Architecture

Figure 5.1: Original Game Architecture

The original game architecture is shown in Figure 5.1. We see that the game
engine and the AI are contained inside the same executable.

1. The game is composed of one executable and some data �les.

2. The AI source code is in the middle of the game engine code; this makes
it di�cult to read and maintain.

3. There are some intellectual property issues in that only the authors can
implement an AI for the game.

4. Only one kind of AI can be used at a time in the game to control
motorbikes. Each motorbike can use its own data �le. It is not possible
to directly compare AI techniques.
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5.2 New AI SDK Architecture

Figure 5.2: Motocross The Force AI SDK Architecture

The new game architecture is shown in Figure 5.2. The game engine is
contained inside an executable, and the AI is contained inside separate DLL's.
The reader can easily compare points 1 to 4 in this section with the previous
section for easy comparison of the two architectures.

1. The game is made of one executable, some DLL's and some data �les.
DLL stands for Dynamic Link Library. Typically DLL's provide one
or more particular functions and a program accesses the functions by
creating either a static or dynamic link to the DLL. In the context of
the new architecture for the motocross game, each DLL implements
one kind of AI and is linked dynamically.

2. The AI source code is separated from the game engine code, with one
small DLL project per AI; this makes it easy to read, implement and
maintain.

3. The AI part is separated from the game engine and is open source.
Anyone can implement an AI for the game.

4. Many kinds of di�erent AI's can be used at a time in the game to
control motorbikes. Each motorbike can use its own DLL �le and its
own data �le. It is possible and easy to directly compare AI techniques.
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The GA has been left inside the executable so that an external AI
can have its internal parameters (weights) optimised by the executable. An
external AI can also implement its own GA or optimisation technique and
not use the optimisation facilities o�ered by the executable.

5.3 Game Classes and Structures

Before implementing AI for the game, it is important that the user has a
good understanding of the various classes and structures in use in the game.

5.3.1 Track

A track is a course over which races are run. Typically a track is of variable
width along its course. The tracks are marked using WayPoints.

5.3.2 WayPoint

WayPoints are markers positioned on the centre of the track, every metre
along the track, and are used:

• To give course information to computer controlled bikes, i.e. position,
direction and width of the track.

• To monitor the performance: a bonus can be given to a computer
controlled bike for passing a WayPoint as described in Sections 2.3 and
4.3.

5.3.3 Game Engine

There is one game engine, it is implemented by the executable. It is every-
thing but the AI, and is responsible for updating the simulation.

5.3.4 AI

There is one AI per computer controlled bike. Each AI can be written to or
read from an AI data �le. Each AI makes use of an AI DLL. More than one
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bike can share the same DLL. An AI is trained to make a decision given a
situation.

5.3.5 Situation

The situation is the general state of the bike, position, orientation and ve-
locity relative to the ground.

5.3.6 Decision

These are commands and are nearly the same as the controls for the human
player:

• turn left/right.

• target velocity.

• rotation of the bike forward/backward.

• rotation of the bike left/right.

5.3.7 SampleData

SampleData is the main structure used for communication between the
game engine (executable) and the AI DLL. Typically the game engine �lls
the situation �elds of the structure and passes the structure to the AI DLL;
the AI DLL �lls the decision �elds of the structure, given the situation, and
passes it back to the game engine; the game engine updates the state of the
corresponding computer controlled bike and the simulation accordingly.

5.3.8 Training Set

A training set is a structure used for the training of AI. A training set is
a collection of SampleData's made from the recording of a human player
playing the game. Each sample contains a situation and the corresponding
human player's decision. AI's are trained to make the same decision as the
human player, given a situation. We saw in the previous chapter that there
is a conceptual di�erence between the way the data is used for supervised
compared with unsupervised techniques: the supervised techniques use error
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between their outputs and the target responses in order to change their pa-
rameters to make their outputs more like the target responses in future; the
unsupervised techniques perform some form of averaging over the targets to
generate an appropriate output.

5.3.9 Terrain

This is a structure used to give ground height information.

5.3.10 Weight

A Weight is an AI parameter that is to be optimised using for example
Genetic Algorithms. Typically a weight is a connection strength between
two neurons in an ANN.

5.3.11 Genetic Algorithms

Training is considered to be a type of optimisation. GA is used to improve
the AI's performance by modifying AI weights. GA is implemented by the
executable.

5.4 Implementing New AI

Figure 5.3: Communication between the game engine executable and the AI
DLL.

An important feature of the architecture is that the executable calls DLL
functions, for example for decision making, but the AI DLL's can also call
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executable functions, for example to obtain more information about a situ-
ation, before making a decision. It is a two way communication process as
shown in Figure 5.3.

5.4.1 DLL Functions

In order to be recognised by the game executable each AI DLL must be placed
in a particular folder and implement a set of functions; these functions can
be grouped into categories.

General Operation Functions

The general operation functions are:

• Creation: this function is called once before any other DLL function;
it creates an AI and returns a void pointer on the newly created AI to
the executable.

• Destruction: this function is called once when the program exits; it is
responsible for releasing all the memory and resources allocated in the
Creation function.

• Decision Making: this function returns a decision to the executable,
given a situation.

• Render: this function is called every time the game is rendered; this
gives the opportunity to the AI DLL to display AI information; this is
mainly used for debugging purposes.

After AI creation, the executable keeps a void pointer to the AI and passes
it as a parameter to all subsequent calls to the AI DLL.

Training Functions

These functions are typically used for training the AI using back propagation
techniques.

• Generate AI From Training Set: this function is called every time the
user wants an AI to learn from a training set. The DLL loads and
processes the training set.
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• Generate AI From Training Set Update: this function is called once
per game update: the DLL updates the training or generation of an AI
from a training set; typically there are 25 backpropagation iterations
per game update and 100 game updates per second.

• Is Generating AI From Training Set: returns true if the AI is currently
training from training set.

Weights Functions

These functions are typically used for training the AI using e.g. genetic
algorithms techniques.

• Put Weights

• Get Weights

• Set Generation

• Get Generation

• Save Weights

• Get Number Of Weights

Version Functions

• Get AI Name: returns AI DLL name, one name per AI DLL.

• Get AI Version: returns version of AI implemented.

• Get Debug: returns true if this is a Debug version of AI DLL.

All these functions were found useful to carry out our experiments. To
make the architecture simpler, an AI DLL is required to implement all these
functions in order to be recognised by the executable. If some functions are
not needed (for example the user does not want to use GA), then the user
can simply create empty functions.

5.4.2 Executable Functions

The executable makes the following functions available to AI DLL's.
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WayPoint Functions

AI DLL's can make calls to the executable to obtain the following interpo-
lated information about WayPoints:

• Transformation matrix (a 4x4 matrix representing a position and an
orientation)

• Position

• Direction

• Width

The information is interpolated between WayPoints. The functions
take two parameters, a WayPoint index, with one WayPoint every metre
along the track, and a distance in centimetres along the track from this
WayPoint.

Drawing Functions

AI DLL's can make calls to the executable to draw the following kind of
primitives on the screen:

• 3D Vertices

• 3D Lines

• Text

• Rectangles

These functions are used mainly for debug purposes and take a colour as one
of their parameters.

Track Functions

AI DLL's can make calls to the executable to obtain information about tracks
and terrain:

• Height: a function returns the terrain height at a given position.
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• Track creation: the DLL can load tracks; this is useful when processing
training sets; a training set can contain training data from more than
one track.

• Track unique identi�ers: the DLL can check that a track has not
changed since the time the training set was generated.

Other Functions

• Get Version: returns version of the executable.

• Forward transform: a function returns a space centred at the origin
of the motorbike; the Z axis points up and the Y axis follows the
horizontal velocity direction. This space is more convenient than bike
space to represent and transform world objects in relation to the bike.

5.4.3 Operation

The new AI system works as follow:

1. The executable loads all DLL's contained in a given directory; if the
DLL implements all functions described above, and versions match,
then it is kept loaded, otherwise it is unloaded.

2. Each computer controlled bike loads its own AI data �le; each AI data
�le is to be associated with an AI DLL. The association between data
�les and DLL's is done by matching the name contained in data �le
header with the names given by the DLL's.

3. The AI is created using the matching AI DLL CreateAI function, and
all future AI function calls will call the matching AI DLL functions.

5.5 Conclusion

In this chapter, we have reviewed the changes to the structure of the code
designed to make this game a suitable testbed for disparate researchers to
investigate the use of their particular AI's in the context of this game. We
envisage that it is now possible for researchers to implement their own meth-
ods in this game and perform comparative studies with the results discussed
in the thesis. More details about the SDK can be found in Chapter B.
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A New Evolution Technique

We introduce an improved evolutionary algorithm technique which overcomes
some of the de�ciencies in the previous methods.

6.1 Presentation

We have seen in Chapter 4 how Genetic Algorithms could be used to train or
optimise Arti�cial Neural Networks to control motorbikes in the motocross
game.

There are still problems with this approach:

• Training and optimisation take a long time to perform (typically a few
days). It is not desirable that all the improvement in AI performance
is lost when the game exits.

• Behaviours that are appropriate on one motocross track may not be
appropriate on another track. If an AI spends a long time on a track,
it is not desirable that its performance increases only for that particular
track and decreases for all other tracks.

To solve these two problems, an AI DLL, using the AI SDK described in
Chapter 5, is created. This new AI DLL is called Evolution and implements
Genetic Algorithm and Cross Entropy Optimisation.

This AI DLL creates:

1. One AI �le per AI.
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2. One AI �le per AI per motocross track.

Each �le does not contain information about one AI, but contains in-
formation about a population of sub AI's (typically 20 sub AI's per �le).
Each sub AI is made of:

• Weights, to be optimised, corresponding to connection weights inside
an ANN.

• Estimated �tness, to be maximised.

• Number of iterations or length of time the sub AI has been evaluated
for.

• Unique identi�er (ID), used to only perform crossover between sub AI's
with the same ID.

This last item is because crossover between individuals with di�erent
ID's (di�erent species) generally produces totally un�t individuals.

The �rst �le is the initial state of the AI, after it has been trained from
a training set using the Backpropagation Algorithm, before optimisation.
Each sub AI is trained using di�erent bags or portions of the training set, so
after the initial training all sub AI's are slightly di�erent from one another.

• Half the sub AI's train on separate and equal size portions of the train-
ing set.

• The other half train using separate bags, as described in Section 3.3.1.

All sub AI's are initially given di�erent unique identi�ers.

The second �le is the current state of the AI; when the game level
is loading, the AI attempts to load this second �le, so it can continue the
evolution on that particular track that was started in a previous game session.
If the second �le does not exist (no evolution was started on that particular
track in any previous game session), the AI loads the �rst �le and starts
evolution from the beginning. The AI then saves itself to �le using the
second �le name.

The AI saves itself to �le each time there is a change in the population
of sub AI's.

The new AI DLL called Evolution allows us to experiment with dif-
ferent evolution techniques with one small programming project.
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The GA is a generational evolution technique. Each population of
chromosomes is replaced by a new population of chromosomes after every
generation.

One problem with this technique is associated with the fact that the
chance for chromosomes to be selected for reproduction is proportional to
the chromosomes' �tness. Random numbers are used and there is a small
but non-zero possibility that only the least �t chromosomes are selected for
reproduction. This can sometimes have a positive e�ect on the evolution by
preventing the population from converging towards a local optimum solution.
However this can at other times have a negative e�ect when a lot of the
evolved training is lost and the population degenerates. This is particularly
true when the population size is small. We saw examples of this in chapter
4.

This is what seems to have happened in the following experiment
(Graph 6.1), in which the GA was used to evolve a population.

Figure 6.1: Fitness of the AI, GA used for optimising networks; problem at
t=2136, the �tness decreases sharply.

Another problem is that the evaluation period is short, and during this
short period, �t chromosomes may be evaluated as un�t and reciprocally
un�t chromosomes can be evaluated as �t.

Finally, this evolution technique does not keep a record of the best
chromosomes generated so far.
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To solve this problem we investigated a steady state evolution technique
inspired by Reinforcement Learning.

In traditional generational evolution, each individual in the whole pop-
ulation is evaluated for a �xed time and the �ttest are picked to breed and
form the next generation. In steady state evolution, populations contain com-
peting individuals of all ages, each with the potential for dying or procreation
at each stage [School 2003].

In this new technique the population is not totally replaced after every
generation; instead each individual is generated and evaluated and only enters
the population if it is evaluated as more �t than the worst individual in the
population, to replace the worst individual in the population. The population
is thus an elite one, providing a record of the best individuals generated so
far.

The AI uses these elite individuals most of the time; this allows the AI
to perform better than if a newly generated individual was being used. The
AI at the same time re�nes the evaluation of the elite individual being used.
The AI sometimes tries newly generated individuals, so that the population
can evolve.

The rationale for this methodology is based on Reinforcement Learning
in which ϵ-greedy policies are often used: an ϵ-greedy policy is one in which
the currently best solution (the best solution found up to this time) is used
most of the time but with probability ϵ (usually a small value, say 0.1) a
random solution is chosen. This enables a good policy to be exploited mostly
but allows for some exploration of alternative, potentially better policies.
Thus in the current context, we exploit the currently optimal solutions most
of the time but occasionally try out a new random solution.

The rationale for this methodology is based also on the fact that in real
populations of individuals, �t individuals live longer that un�t individuals.

6.2 Experiments

The evaluation period is the same as with GA (10 minutes). At the beginning
of each evaluation period, each AI randomly picks one of the following three
states:

• Evaluator: The best least evaluated individual in the elite population
is picked for evaluation (if there are equally least evaluated individuals,
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then the best one of these sub AI's is evaluated �rst). The AI takes
this evaluator state if one individual in the population has not yet
been evaluated in which case the individual is picked for evaluation.
This state is used to re�ne the �tness evaluation of individuals in the
population.

• Explorer: A new individual is created using GA techniques and the
elite population. At the end of the evaluation period the newly created
individual replaces the worst individual in the population only if it is
evaluated as more �t; this way the elite population �tness normally
only increases.

• Exploiter: The �ttest individual is picked for evaluation. This state
is used to re�ne the �tness evaluation of the �ttest individual in the
population; in this mode the AI normally performs best.

The AI picks one of the three states with respective probabilities 0.05, 0.9
and 0.05.

It is possible by modifying these numbers to adjust the behaviour of
the AI; have the AI to exploit more (better performance), or explore more
(better evolution).
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6.2.1 Training

Training Short Experiment
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Figure 6.2: Fitness of the AI with the New Evolution Technique used for
training networks. New evolution technique in thick grey compared to GA
in light red. Track Long.
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Training Short Experiment
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Figure 6.3: Lap Times of the bikes (corresponding to Figure 6.2), New Evo-
lution Technique used for training networks. The New evolution technique
in thick grey compared to GA and CEP. Track Long.

This experiment (Figures 6.2 and 6.3) is successful. Some new longer training
experiments are carried out (Figures 6.4 and 6.5) in order to investigate
whether this technique su�ered from the same shortcomings as the standard
Genetic Algorithm. In particular, we wish to investigate whether the solution
found is stable or is liable to develop the degeneracy which we saw with the
simple GA.



114 A New Evolution Technique

Training Long Experiment
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Figure 6.4: New experiment, �tness of the AI, New Evolution Technique used
for training networks. New evolution technique in thick grey compared to
GA and CEP. Track Long.
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Training Long Experiment
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Figure 6.5: New experiment, lap times of the corresponding bikes, New Evo-
lution Technique used for training networks. New evolution technique in
thick grey compared to GA in light red. Track Long.

We can see that this New Evolution Technique is working much better
than GA at training networks, with the �tness increasing steadily and no
degeneration. At the end of training, average lap times are 2 minutes 10
seconds and 2 minutes 3 seconds.
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6.2.2 Optimisation

Optimisation Short Experiment
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Figure 6.6: Fitness of the AI, New Evolution Technique used for optimising
networks. New Evolution Technique in thick grey compared to GA and CEP.
Track Long.
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Optimisation Short Experiment
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Figure 6.7: Lap Times of the corresponding bikes, New Evolution Technique
used for optimising networks. New Evolution Technique in thick grey com-
pared to GA and CEP. Track Long.

Some new longer optimising experiments are carried out.
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Optimisation Long Experiment
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Figure 6.8: New experiment, �tness of the AI, New Evolution Technique used
for optimising networks. New experiment, new evolution technique in thick
grey compared to GA and CEP. Track Long.
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Optimisation Long Experiment
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Figure 6.9: New experiment, lap times of the corresponding bikes, New Evo-
lution Technique used for optimising networks. New experiment, new evolu-
tion technique in thick grey compared to GA and CEP. Track Long.

We can see from Figures 6.6, 6.7, 6.8 and 6.9 that this New Evolution
Technique is working better than the standard GA and CEP at optimizing
networks, with the �tness increasing steadily and no degeneration. At the end
of optimising, the average lap time is 2 minutes 5 seconds. The computer
controlled bikes are now faster than a good human player (2 minutes 15
seconds); the computer can race motorbikes fast for a long time whereas the
human player can only race fast for a few laps.

6.2.3 Conclusion

This New Evolution Technique, inspired by Genetic Algorithm and the Rein-
forcement Learning technique of ϵ-greedy policies, is an optimisation process
that seems to perform better than the simple GA and Cross Entropy with
Perturbation methods. The end result is an AI performing better than a
good human player. Unlike the GA, the evolution is steady, robust and pre-
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dictable. However, similar to the GA, the optimisation can take a long time
to perform.

Note that in the current implementation it is possible for the user to
play the game while the AI of other bikes is being optimised by the evolution
technique; if the AI is not optimised it may still perform well but may not be
optimal. The optimisation process takes a long time and the user may want
the AI to be optimised while he/she is not playing the game.



Chapter 7

Conclusion

In this short �nal chapter, we give a review of the thesis, highlighting our
new work and then suggest strands of future work.

7.1 Review of the thesis

This thesis has presented the results of �ve years work into the use of AI tech-
niques in the control of a motocross game. We began with a review of similar
games and a review of di�erent techniques of computational intelligence.

We have used an arti�cial neural network, speci�cally a multilayered
perceptron, to control the bikes within the game. A great deal of e�ort has
gone into getting the correct representation of the game world which was
optimal for the AI. This representation has to capture the most important
aspects of the environment but not be so complex that it interferes with
learning which features are most essential to learning how to get round the
track optimally. Having developed this representation, we used it consistently
throughout the thesis.

The AI has learned (the parameters have been trained) using a number
of di�erent techniques, the most noteworthy of which are

1. Backpropagation. This standard supervised technique was shown to
be very e�ective at learning how to ride the bike, its lap times being
very close to those achieved by the author. We showed that the trained
networks showed good generalisation properties: an AI trained on one
track would perform well on tracks other than the training one, pro-
vided of course that they were not too di�erent. Of course, we cannot



122 Conclusion

expect that this method would beat the human player - it is, after all,
trained to try to emulate the human and so its responses are incremen-
tally approaching his responses but will never go beyond his responses.
Thus we investigated other techniques which have the potential for
improving on the human skills.

2. Genetic Algorithms. We used GA to optimise the parameters in the
multilayered perceptron. The �tness function or score function only
used the e�ectiveness of the AI riding the bike not the information
from a human driving round the track. The GA performed well but
required much more processing time to perform to the standard set by
the backpropagation network, but it also found solutions to the problem
of riding the bike which were very di�erent from the solutions found
by a human rider.

3. Ensemble methods. We were somewhat disappointed by the results
from bagging and boosting. We developed a new parameterisation of
boosting which enabled us to investigate boosting and anti-boosting
by changing a single parameter but nevertheless, the results were not
encouraging. If our experience is typical of research in this area, these
techniques are not useful in the context of computer games.

4. Alternative architectures. We have also investigated di�erent archi-
tectures of arti�cial neural networks - the radial basis function, the
self-organising map and the topographic product of experts - and a
simple symbolic AI method based on �if then else� rules; these pro-
vided a variety of results but not yet able to go beyond those of the
backpropagation method.

5. Cross Entropy Method. We have investigated the use of cross-entropy
to optimise the parameters of the AI and we have shown that this
technique was successful.

6. New evolution. We have developed a new optimisation technique called
New Evolution which improves upon the standard genetic algorithm by
using a technique inspired by the reinforcement learning method of ϵ-
greedy policies; it was shown to improve the genetic algorithm's long
term stability.
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7.2 Future work

We have suggested that our game, Motocross The Force, can be used as
a test-bed for future AI developments and that the need for such a test-bed
is widely shared. However this game should not be the sole basis on which
to evaluate AI developments: there are a variety of computer game genres
- �rst person shooters, empire builders etc - for which di�erent forms of AI
might be more appropriate. We therefore would like to see a library of games
developed in the same manner as in chapter 5.

We have managed to create an AI which can compete with a human
in terms of e�ectiveness, e�ciency, creativity. The AI is good but may not
be the most optimal thus there will be ongoing research into improving the
quality of the AI and, as we said at the beginning, computer games provide a
test-bed which, in many ways, is ideal for experimenting with the new tech-
niques: the world is simpler than the real world, the programmer is in charge
of the physics of the environment, there are no major repercussions if some-
thing goes wrong and the di�culty of any task can be increased incrementally
as the AI becomes more e�ective.

Future work may include implementing AI for the next version of Mo-
tocross The Force, which will feature better gameplay and physics simula-
tion, and using the processing power o�ered by nowadays powerful graphical
processing units and multicore CPU's to implement computer vision and
more powerful AI. Instead of feeding the AI with a simpli�ed representation
of the environment it may be possible to feed it with a full 3D view of the
environment very similar to what a human player can see while playing the
game. It is probable that next version of Motocross The Force will also
feature an AI SDK.
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Appendix A

Tracks

A.1 Tracks

Figure A.1: Tracks Chill (top left), Chill2 (top right), Long (bottom left)
and TrackA (bottom right), used in Training Set 920.
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Figure A.2: Track Long used in Training Set Long.

Figure A.3: Track O (left) and track A (right) used to test ANN generalisa-
tion property.
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Appendix B

AI SDK

B.1 AI DLL

Modules

• Construction and Destrucion Functions

• Operation Functions

• Back Propagation Functions

• Genetic Algorithm Functions

• Other Functions

Detailed Description

All these functions must be implemented by the AI DLL for the AI DLL to
be recognised by the executable.
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B.1.1 Construction and Destrucion Functions

Functions

• VOID ∗ CreateAI (const WCHAR ∗strAIFilename, BOOL bRead-
FromFile)

• VOID DestroyAI (VOID ∗pAI)

Function Documentation

VOID∗ CreateAI (const WCHAR ∗ strAIFilename, BOOL
bReadFromFile)

Create an AI, given an AI �le name (.NN �le extension).

Parameters

strAIFilename (in) AI �le name.

bReadFromFile (in) set to true if AI DLL actually creates the AI from
the �le, or false to create a blank AI.

Returns

void pointer on the newly created AI.

See also

SaveWeights (p. 142). AIFILEHEADER (p. 156).

VOID DestroyAI (VOID ∗ pAI)

Destroy the AI.

Parameters

pAI (in) void pointer on the AI to destroy.
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B.1.2 Operation Functions

Functions

• VOID DecisionMaking (VOID ∗pAI, SampleData &sampleData,
const D3DXMATRIX &ForwardTransform)

• VOID RenderAI (VOID ∗pAI, BOOL bDebug)

Function Documentation

VOID DecisionMaking (VOID ∗ pAI, SampleData &
sampleData, const D3DXMATRIX & ForwardTransform)

Make a decision, given a situation.

Parameters

pAI (in) void pointer on the AI.

sampleData (in,out) situation and decision.

ForwardTransform (in) Bike forward transformation matrix.

See also

SampleData (p. 158).

VOID RenderAI (VOID ∗ pAI, BOOL bDebug)

Render debug information.

Parameters

pAI (in) void pointer on the AI.

bDebug (in) Debug mode; the user can activate Debug mode by press-
ing (CTRL + SHIFT + D).

See also

Drawing Functions (p. 147)
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B.1.3 Back Propagation Functions

Functions

• VOID GenerateAIFromTrainingSet (VOID ∗pAI, const WCHAR
∗strTSFilename)

• VOID UpdateAI (VOID ∗pAI)

Function Documentation

VOID GenerateAIFromTrainingSet (VOID ∗ pAI, const
WCHAR ∗ strTSFilename)

Load and process a training set; prepare for training from training set.

Parameters

pAI (in) void pointer on the AI.

strTSFilename (in) �le name of the training set.

VOID UpdateAI (VOID ∗ pAI)

Update the AI; can be used for updating the training from training set (back
propagation).

Parameters

pAI (in) void pointer on the AI.
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B.1.4 Genetic Algorithm Functions

Functions

• BOOL CanAIBeOptimisedUsingGA (VOID ∗pAI)
• VOID PutWeights (VOID ∗pAI, const vector< �oat > &weights, INT
&cweight)

• VOID GetWeights (VOID ∗pAI, vector< �oat > &weights)

• VOID SetGeneration (VOID ∗pAI, INT nGeneration)

• INT GetGeneration (VOID ∗pAI)
• VOID SaveWeights (VOID ∗pAI, INT nId)

• INT GetNumberOfWeights (VOID ∗pAI)
• FLOAT GetFitness (VOID ∗pAI)
• VOID NewFitness (VOID ∗pAI)
• VOID NewEvent (VOID ∗pAI, EventType event, FLOAT vValue)

• VOID NewEpisode (VOID ∗pAI)

Detailed Description

These are functions for training the AI using Genetic Algorithm or Rein-
forcement Learning.

Function Documentation

BOOL CanAIBeOptimisedUsingGA (VOID ∗ pAI)

Can the AI be optimised using Genetic Algorithms ? If yes then the game
engine may attempt to optimise the weights inside the AI using a Genetic
Algorithm.

Parameters

pAI (in) void pointer on the AI.

Returns

true if AI is currently training from training set.
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FLOAT GetFitness (VOID ∗ pAI)

Get �tness

Parameters

pAI (in) void pointer on the AI.

Returns

Fitness

INT GetGeneration (VOID ∗ pAI)

Get generation.

Parameters

pAI (in) void pointer on the AI.

Returns

Generation.

INT GetNumberOfWeights (VOID ∗ pAI)

Get number of weights.

Parameters

pAI (in) void pointer on the AI.

Returns

Number of weights

VOID GetWeights (VOID ∗ pAI, vector< �oat > & weights)

Get weights from AI.

Parameters

pAI (in) void pointer on the AI.

weights (out) weights.
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VOID NewEpisode (VOID ∗ pAI)

New episode. The bike has been respawned.

Parameters

pAI (in) void pointer on the AI.

VOID NewEvent (VOID ∗ pAI, EventType event, FLOAT
vValue)

New event.

Parameters

pAI (in) void pointer on the AI.

event (in) event type.

vValue (in) information relative to event; meaning depends on event
type.

See also

EventType (p. 155).

VOID NewFitness (VOID ∗ pAI)

New �tness, new chromosome to be evaluated.

Parameters

pAI (in) void pointer on the AI.

VOID PutWeights (VOID ∗ pAI, const vector< �oat > &
weights, INT & cweight)

Put weights into an AI.

Parameters

pAI (in) void pointer on the AI.

weights (in) weights.

cweight (in,out) position
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VOID SaveWeights (VOID ∗ pAI, INT nId)

Save weights.

Parameters

pAI (in) void pointer on the AI.

nId (in) not used.

See also

AIFILEHEADER (p. 156).

VOID SetGeneration (VOID ∗ pAI, INT nGeneration)

Set generation.

Parameters

pAI (in) void pointer on the AI.

nGeneration (in) generation.
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B.1.5 Other Functions

Functions

• const CHAR ∗ GetAIName ()

• INT GetAIVersion ()

• INT GetDebug ()

Function Documentation

const CHAR∗ GetAIName ()

Get AI name; used to match AI �les with AI DLL's.

Returns

AI name.

INT GetAIVersion ()

Get AI version.

Returns

nAIVERSION.

INT GetDebug ()

Get Debug; returns true if this is the debug version of the AI DLL. The
release version of the executable uses the release version of the AI DLL and
the debug version of the executable uses the debug version of the AI DLL.

Returns

Debug.
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B.2 Executable

Modules

• WayPoint Functions

• Drawing Functions

• Terrain Functions

• Other Functions

• Structures, typdefs and enums.

Detailed Description

Functions implemented by the executable that the AI DLL can call.
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B.2.1 WayPoint Functions

Functions

• VOID GetWayPointTransform (D3DXMATRIX &Transform, INT
nWayPointId, FLOAT vDist)

• VOID GetWayPointPosition (D3DXVECTOR3 &Pos, INT nWay-
PointId, FLOAT vDist)

• VOID GetWayPointDirection (D3DXVECTOR3 &Dir, INT nWay-
PointId, FLOAT vDist)

• FLOAT GetWayPointWidth (INT nWayPointId, FLOAT vDist)

Detailed Description

These are functions to get information about WayPoints.

Function Documentation

VOID GetWayPointDirection (D3DXVECTOR3 & Dir, INT
nWayPointId, FLOAT vDist)

Get interpolated WayPoint direction at given distance from nWayPointId.

Parameters

Dir (out) WayPoint direction.

nWayPointId (in) WayPoint ID, starting from zero, with one Way-
Point every metre along the centre of the track.

vDist (in) Distance from WayPoint ID, in cm, along the centre of the
track, used for interpolation.

VOID GetWayPointPosition (D3DXVECTOR3 & Pos, INT
nWayPointId, FLOAT vDist)

Get interpolated WayPoint position at given distance from nWayPointId.

Parameters

Pos (out) WayPoint world position (cm).
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nWayPointId (in) WayPoint ID, starting from zero, with one Way-
Point every metre along the centre of the track.

vDist (in) Distance from WayPoint ID, in cm, along the centre of the
track, used for interpolation.

VOID GetWayPointTransform (D3DXMATRIX & Transform,
INT nWayPointId, FLOAT vDist)

Get interpolated WayPoint transformation matrix at given distance from
nWayPointId.

Parameters

Transform (out) WayPoint Transformation matrix.

nWayPointId (in) WayPoint ID, starting from zero, with one Way-
Point every metre along the centre of the track.

vDist (in) Distance from WayPoint ID, in cm, along the centre of the
track, used for interpolation.

FLOAT GetWayPointWidth (INT nWayPointId, FLOAT vDist)

Get interpolated WayPoint width at given distance from nWayPointId.

Parameters

nWayPointId (in) WayPoint ID, starting from zero, with one Way-
Point every metre along the centre of the track.

vDist (in) Distance from WayPoint ID, in cm, along the centre of the
track, used for interpolation.
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B.2.2 Drawing Functions

Functions

• VOID ImmediateDrawVertex (D3DXVECTOR3 Pos, FLOAT
vSize, DWORD Color)

• VOID ImmediateDrawLine (D3DXVECTOR3 A, D3DXVECTOR3
B, DWORD Color)

• VOID ImmediateDrawText (const WCHAR ∗strTxt)
• VOID ImmediateDrawRectangle (FLOAT x, FLOAT y, FLOAT w,
FLOAT h, FLOAT z, DWORD Color)

Detailed Description

These are functions for drawings things on screen; for debug purposes.

See also

RenderAI (p. 137).

Function Documentation

VOID ImmediateDrawLine (D3DXVECTOR3 A,
D3DXVECTOR3 B, DWORD Color)

Draw a 3D line.

Parameters

A (in) First world position (cm).

B (in) Second world position (cm).

Color (in) Color (ARGB).

VOID ImmediateDrawRectangle (FLOAT x, FLOAT y, FLOAT
w, FLOAT h, FLOAT z, DWORD Color)

Draw a 2D rectangle. Screen coordinataes are (0,0) top left to (1,1) bottom
right.
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Parameters

x (in) X position of top left corner.

y (in) Y position of top left corner.

w (in) Width.

h (in) Height.

z (in) Depth (range (0,1)).

Color (in) Color (ARGB).

VOID ImmediateDrawText (const WCHAR ∗ strTxt)

Draw text.

Parameters

strTxt (in) Text to display.

VOID ImmediateDrawVertex (D3DXVECTOR3 Pos, FLOAT
vSize, DWORD Color)

Draw a 3D Vertex.

Parameters

Pos (in) World position (cm).

vSize (in) Size of vertex (cm).

Color (in) Color (ARGB).
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B.2.3 Terrain Functions

Functions

• FLOAT TerrainGetHeight (FLOAT x, FLOAT y)

• VOID TrackCreate (const WCHAR ∗strFileName, BOOL bFullCre-
ate)

• INT TrackGetUniqueID (INT nId)

• const WCHAR ∗ TrackGetShortName ()

• const WCHAR ∗ TrackGetFileName ()

Detailed Description

These are functions to create and get information about tracks and terrains.

Function Documentation

FLOAT TerrainGetHeight (FLOAT x, FLOAT y)

Get terrain height at given horizontal position (Z is up).

Parameters

x (in) X position in world space (cm).

y (in) Y position in world space (cm).

Returns

Terrain height at given position (cm).

VOID TrackCreate (const WCHAR ∗ strFileName, BOOL
bFullCreate)

Create a track, given a track �le name.

Parameters

strFileName (in) Track �le name.

bFullCreate (in) Set to true to create everything including the visuals,
or false to create minimum required for processing training set data.
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const WCHAR∗ TrackGetFileName ()

Get the track �le name.

Returns

Track �le name.

const WCHAR∗ TrackGetShortName ()

Get the track short name.

Returns

Short name.

INT TrackGetUniqueID (INT nId)

Get one of the ten track unique ID's. Unique ID's are used to uniquely
identify tracks; this is useful to ensure a track has not been modi�ed between
the time training data has been generated and the time the training data is
used.

Parameters

nId (in) Unique ID ID (0,9).

Returns

Unique ID.
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B.2.4 Other Functions

Typedefs

• typedef BOOL(CALLBACK ∗ TPROGRESSBARCALLBACK-
UPDATE )(VOID ∗pUser, WCHAR ∗strDesc, FLOAT ∗pRatio, INT
nNumIterations)

Functions

• VOID GetForwardTransform (D3DXMATRIX &ForwardTrans-
form, const D3DXVECTOR3 &BikeDir1, const D3DXVECTOR3
&BikeVel, const D3DXVECTOR3 &BikePos)

• INT GetAIVersion ()

• VOID AddProgressBar (TPROGRESSBARCALLBACKUP-
DATE CallBackUpdate, VOID ∗pUser, INT nIterationsPerUpdate,
BOOL bRender)

• VOID Pro�lerStart (INT nID)

• VOID Pro�lerStop (INT nID)

• VOIDGetOtherBikesInfo (VOID ∗pAI, vector< BikeInfo > &bike-
Infos)

Typedef Documentation

typedef BOOL(CALLBACK ∗ TPROGRESSBARCALLBACK-
UPDATE)(VOID ∗pUser, WCHAR ∗strDesc, FLOAT ∗pRatio,
INT nNumIterations)

Callback.

Implemented by DLL, called by executable, to be passed as parameter
to function AddProgressBar.

Parameters

pUser (in) pointer on user data.

strDesc (out) text to display.

pRatio (out) progress.

nNumIterations (in) number of iterations inside the callback.



152 AI SDK

Returns

true if process �nished, false otherwise.

Function Documentation

VOID AddProgressBar (TPROGRESSBARCALL-
BACKUPDATE CallBackUpdate, VOID ∗ pUser, INT
nIterationsPerUpdate, BOOL bRender)

Add Process, render progress bar.

Parameters

CallBackUpdate (in) Process callback.

pUser (in) pointer on user data, to be passed to CallBackUpdate.

nIterationsPerUpdate (in) number of iterations inside the CallBack-
Update.

bRender (in) set to true to render progress bar on screen.

INT GetAIVersion ()

Get AI version.

Returns

nAIVERSION.

VOID GetForwardTransform (D3DXMATRIX &
ForwardTransform, const D3DXVECTOR3 & BikeDir1, const
D3DXVECTOR3 & BikeVel, const D3DXVECTOR3 & BikePos)

Get a space centred at the origin of the motorbike; the Z axis points up and
the Y axis follows the horizontal velocity direction. This space is more con-
venient than bike space to represent and transform world objects in relation
to the bike.

Parameters

ForwardTransform (out) Bike forward transformation matrix.

BikeDir1 (in) Bike back direction.



B.2 Executable 153

BikeVel (in) Bike velocity (cm/s).

BikePos (in) Bike world position (cm).

VOID GetOtherBikesInfo (VOID ∗ pAI, vector< BikeInfo > &
bikeInfos)

Get Information about other bikes position and velocity.

Parameters

pAI (in) void pointer on the AI of the current bike.

bikeInfos (in,out) a reference to a vector of BikeInfo (p. 157).

See also

BikeInfo (p. 157).

VOID Pro�lerStart (INT nID)

Start the time pro�ling of a block; after program execution, the pro�ler
reports in �le "pro�le.txt".

Parameters

nID (in) Block Identi�er.

VOID Pro�lerStop (INT nID)

Stop the time pro�ling of a block; after program execution, the pro�ler re-
ports in �le "pro�le.txt".

Parameters

nID (in) Block Identi�er.
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B.2.5 Structures, typdefs and enums.

Classes

• struct AIFILEHEADER

AI �le header.

• struct SampleData

Sample.

• struct BikeInfo

Bike Position.

Enumerations

• enum EventType {

EVENT_TYPE_PASSWAYPOINT = 0, EVENT_TYPE_-
MISSWAYPOINT = 1, EVENT_TYPE_CRASH = 2,
EVENT_TYPE_RESPAWN = 3,

EVENT_TYPE_NEWLAP = 4 }

Event Enum.

Variables

• const INT nAIVERSION = 3

AI Version.

Detailed Description

These are used for communication between the DLL's and the executable.
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Enumeration Type Documentation

enum EventType

Event Enum.

Enumerator:

EVENT_TYPE_PASSWAYPOINT Bike has just passed a way-
point (the associated value is the normalised distance from centre
of the next WayPoint).

EVENT_TYPE_MISSWAYPOINT Bike has just missed a way-
point (the associated value is the normalised distance from centre
of the next WayPoint).

EVENT_TYPE_CRASH Bike has just crashed (the associated
value is zero).

EVENT_TYPE_RESPAWN Bike has has just been respawned
(the associated value is the distance fron the previously missed
WayPoint (cm)).

EVENT_TYPE_NEWLAP Bike has has just completed a lap (the
associated value is the lap time in seconds).

Variable Documentation

const INT nAIVERSION = 3

AI Version.

The AI version given in the �le header, by the executable and by the
AI DLL must match nAIVERSION.
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B.3 Class List

B.3.1 AIFILEHEADER

Public Attributes

• CHAR pszAiName [AI_NAME_MAXLENGTH]

• DWORD nAiVersion

Detailed Description

AI �le header. This �le header must be at the begining of every AI �le (�les
with .NN �le extension).

Member Data Documentation

DWORD AIFILEHEADER::nAiVersion

AI version; must be equal to nAIVERSION.

CHAR AIFILEHEADER::pszAiName[AI_NAME_-
MAXLENGTH]

AI name, with one name per AI DLL; is used to tell the executable which
AI DLL to use for a given AI �le (.NN �le extension).
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B.3.2 BikeInfo

Public Attributes

• D3DXVECTOR3 BikePos

• D3DXVECTOR3 BikeVel

Detailed Description

Bike Position. Structure used for communication between the executable and
the AI DLL about other bikes position and velocity.

Member Data Documentation

D3DXVECTOR3 BikeInfo::BikePos

Global position of the bike (cm)

D3DXVECTOR3 BikeInfo::BikeVel

Global velocity of the bike (cm/s)
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B.3.3 SampleData

Public Attributes

• INT nCurrentWayPointId

• D3DXVECTOR3 BikePos

• D3DXVECTOR3 BikeDir0

• D3DXVECTOR3 BikeDir1

• D3DXVECTOR3 BikeVel

• D3DXVECTOR3 BikeAPos

• D3DXVECTOR3 BikeAVel

• FLOAT vLeftX

• FLOAT vLeftY

• FLOAT vRightX

• FLOAT vRightY

• FLOAT vScore

• FLOAT ∗ pInputs

Detailed Description

Sample. Structure used for communication between the executable and the
AI DLL.

Member Data Documentation

D3DXVECTOR3 SampleData::BikeAPos

(in) Bike angular position (rad).

D3DXVECTOR3 SampleData::BikeAVel

(in) Bike angular velocity (rad/s).

D3DXVECTOR3 SampleData::BikeDir0

(in) Bike right direction.
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D3DXVECTOR3 SampleData::BikeDir1

(in) Bike back direction.

D3DXVECTOR3 SampleData::BikePos

(in) Bike world position (cm).

D3DXVECTOR3 SampleData::BikeVel

(in) Bike velocity (cm/s).

INT SampleData::nCurrentWayPointId

(in) Current WayPoint ID.

FLOAT∗ SampleData::pInputs

(in) Pointer on user data.

FLOAT SampleData::vLeftX

(in,out) Turn decision.

FLOAT SampleData::vLeftY

(in,out) Bike rotate around right axis decision.

FLOAT SampleData::vRightX

(in,out) Bike rotate around up axis decision.

FLOAT SampleData::vRightY

(in,out) Accelerate brake decision.
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FLOAT SampleData::vScore

(in) Score (not used).


