Issues in the Physics of a Motocross Simulation

Benoit Chaperot, Colin Fyfe,
School of Computing,
The University of Paisley, Paisley, PA1 2BE, SCOTLAND.
email: benoit.chaperot, colin.fyfe@paisley.ac.uk

Abstract

In this paper, we investigate the use of a rigid
body simulation engine to simulate a motocross
bike. We discuss the movement of bikes from a
theoretical perspective and apply this perspective
to a simple motocross bike. This initial model suf-
fers from control problems and we introduce sev-
eral extensions which lead to a stable and enjoy-
able game. We believe that we have created the
first realistic motocross simulator (as opposed to
arcade game).

1 Introduction

Rigid body simulation, or physics simulation, is a method
for simulating mechanical systems. It is generally present
as a piece of software (library), used as part of another
piece of software (in this case a video game).

Motocross Madness is a motocross game, released in
year 2000; it is a popular and fun game to play. It does
not make use of rigid body simulation. Other games, like
MX Unleashed have been released since (see [10] and [9]),
are nearly equally fun to play, and make use of rigid body
simulation. However the simulation is used not to make
the control of the bike more realistic, but to make the an-
imation more attractive to the eye. One can see the rider
moving on the bike, and the suspensions working as the
bike goes over bumps, but the bike handles in a unreal-
istic way. These are called arcade games, as opposed to
simulator games. In arcade games, fun and game play is
preferred to simulation and realism.

The main difference between an arcade racing game
and a simulation racing game is that in an arcade rac-
ing game the behavior of the vehicle is controlled by a set
of rules, procedures and animations, whereas for a sim-
ulation the behavior of the vehicles is controlled by the
physical and mechanical properties of the vehicle, and by
the physics engine.

Simulators can offer a different, still enjoyable gaming
experience, as proved by the success of games like Gran
Tourismo. The use of rigid body simulation for vehicle
simulation is not new. The library used for vehicle simu-
lation can either be:

e A general purposes rigid body simulation library (for
example [6], [11], [13], [12] or [4]); this solution has
the advantage that it gives a lot of freedom and flex-
ibility to developers to experiment and implement
realistic vehicle simulation.

e A vehicle simulation library ([5] or [1]); this works
well since the library is dedicated to vehicle simu-
lation; it makes development easier; however, this
solution may not offer as much flexibility as when
using a general purposes rigid body simulation li-
brary.

e In house solution. This offers the most flexibility;
however it may be very costly in terms of develop-
ment.

There is no motorbike simulator on the market; this,
together with a strong interest in bikes, simulators and
video games, is our main motivation for creating what
can be considered as the first motocross simulator.

In this paper, we investigate the use of rigid body sim-
ulation, to simulate a motocross bike, in the context of the
Motocross The Force game. Motocross The Force is a mo-
tocross game featuring terrain rendering and rigid body
simulation. An example of it in use can be seen at

http://cis.paisley.ac.uk/chap-cil

The game has been developed and is still being developed
in conjunction with Eric Breistroffer (2D and 3D artist).
First, we have an overview of the theory behind bike rid-
ing, then we detail our approach to using rigid body sim-
ulation to simulate a motorbike and some of the improve-
ments made over the original models. Finally we conclude
by discussing the right trade off between simulation and
arcade methods.

2 Riding a bike: theory

First, it is worth noting that a motorbike is by nature sta-
ble; this means that, in normal conditions, while riding a
motorbike, the handle bars and front fork do not oscillate;
the bike tends not to lean to one side, and it tends to go
in a straight line.

There are two main things that make bikes naturally
stable:

e Gyroscopic precession: this is a phenomenon occur-
ring in rotating bodies in which an applied force is
manifest 90 degrees later in the direction of rotation
from where the force was applied.

e Rake angle and trail: as described on The Master
Strategy Group site [2], wobble and weave are di-
minished because, when the wheel is pointing at an
angle other than straight ahead, the contact patch is
not in alignment with the direction of travel of the

bike, that is, a slip angle is created. A restoring force
is applied to the contact patch by the ground which
attempts to force that alignment. Thus, because of
trail, the front wheel tries to go in a straight line
(see Figure 1).

In practice, a rider can ride a motorbike with no hands,
except to operate the throttle.

Let’s now consider the main forces acting on the motor-
bike; for simplicity it is assumed that the rider is attached
to the bike, and bike and rider can be considered as one
body. The three main forces acting on the bike are:

e The weight, acting down: F; = mg with m the total
mass, and g the gravity.

e The centrifugal force, acting horizontally, directed
towards the outside of the turn:

7”I’L’U2

F,=— 1
= (1)
with m the total mass, v the linear velocity, and r
the turn radius.

e The contact force, from the contact between the
tyres and the ground.

The sum of these three forces can be assumed to be
zero and the triangle of forces closed, if the bike is bal-
anced.

Other forces, including traction, inertia, air friction,
gyroscopic precession are also acting on the bike, but these
can be ignored for now for clarity, mainly because these
forces have no effect or no negative effect on the balance
of the bike.

From Figure 1, and with the concept of these three
main forces acting on the motorbike, one can assume that
what makes a motorbike turn, is not the direct action on
the handle bar; instead, it is the angle the bike is making
with the ground (roll angle).

Besides, one can notice that the only force that can be
controlled by the rider is the horizontal component of the
ground contact force. This horizontal force, which acts at
ground level, determines the roll angle the bike is making
with the ground and is obtained by action on the handle
bars.

As an example, let say the bike is going in a straight
line; the rider wants to turn right:

1. The rider would first counter steer left, in order to
pull the front wheel contact patch to the left, and
put the weight of the bike to the right of the contact
patches.

2. The weight makes the bike lean to the right.

3. The rider would then gently steer right, to close the
triangle of forces, and balance the bike; the bike can
be assumed to be balanced when the sum of weight
and centrifugal forces lie in between the two contact
patches.

The procedure is reversed if the rider wants to turn left or
wants to go back to a straight line.

We are confident that most of the mechanical phenom-
ena described here can be reproduced using physics simu-
lation.

3 Physics Simulation model

Open Dynamics Engine (ODE) [6] was chosen for the sim-
ulation, because it is an open source project, with a large
community of users maintaining it and enhancing it. Also
it is probably as fast, accurate and stable as expensive
commercial rigid body simulation packages. Open source
gives the possibility to modify the engine and add the fea-
tures that are missing for a particular requirement. LUA
is a script engine which is used for scene creation. It allows
modifying the simulation scene without having to recom-
pile the executable. It allows the separation of code and
scene data.

3.1 Collision Model

On a car simulation, wheels are often modelled as spheres.
This is not appropriate in the case of our motorbike sim-
ulation, because as the bike makes an angle with the
ground, the effective radius of the bike would reduce.
Other primitives have been tested, such as thin cylin-
der primitives (disks), but these primitives proved not to
be very stable. Another problem with thin disks is that
because of the limited time step used for the simulation
(1/100 of a second), a thin disk can fall through a plane,
if lying against this plane. With this limited time step the
simulation engine does not handle collision between prim-
itives with limited thickness well (due to gravity, a very
thin object can travel more than its thickness during one
time step, and the collision with a coplanar plane can be
missed).

For the rendering, a terrain engine is created. All ver-
tices are positioned on a regular grid (horizontal x and
y coordinates), but with different height (z coordinate).
This makes the creation and editing of terrains easy and
efficient because all the terrain can be created, edited, and
stored in memory as a two dimensional height map. A tri-
angle mesh collision primitive could have been used, but
it would not take advantage of the two dimensional dis-
tribution of vertices, hence would not be as efficient as a
collision primitive that will take advantage of this partic-
ular distribution.

For these reasons, two collision primitives have been
created for ODE. One primitive is a cone, with high ra-
dius to length ratio, which is used for the wheels. The
other primitive is a terrain, making full use of the partic-
ular distribution of vertices.

One problem with creating new primitives is that for
each primitive, a call back function is needed for collision
with any other primitive. Hence the number of collision

functions grows exponentially with the number of prim-
itives. For the terrain the problem has been solved by
considering the collision of primitives with the terrain as
collisions of primitives with the planes and edges making
the terrain; hence reducing the collision problem as reusing
all the other primitives collision functions with planes and
rays. For the cone, only two collision functions have been
implemented, collision between cone and plane, and col-
lision between cone and ray, in order for cones to collide
with terrains. For any other collision, the sphere collision
functions are used; this proved not to be a problem and
any discrepancies are not noticeable in the vast majority
of cases.

3.2 Dynamic Model

Dynamic bodies are used for the simulation. Each dy-
namic body can be associated with one or more collision
objects. More than one collision object can be used on the
same body to create a simulation object with a complex
collision shape. Rigid bodies have mass and inertia ten-
sors; these masses and inertia tensors can be set indepen-
dently from the shape of the associated collision objects.
As an example, wheels are set to have cones as collision
object, but have hollow cylinders for mass and inertia ten-
sor. As a first attempt, a fork and front wheel have been
modelled using ODE joints. The wheel was attached to
the fork using a Hinge joint, and the fork is attached to
the bike frame using a Hinge2 (suspension and double ro-
tation joint). This proved not to be successful; because of
the limited time step and corresponding lack of accuracy
of the physics engine, each joint introduces an error, and
the sum of the two errors means the front wheel looked
as if it was very loose. Instead, a Hinge2 joint has been
used to attach the front wheel directly to the frame; this
proved to be more successful but removes the trail as dis-
cussed above. The fork is attached to the frame, using
a Hinge joint and is given the same rotation as the front
wheel Hinge2 top axis. The rear wheel is also attached
to the frame using a Hinge2 joint. The rider’s trunk is
attached to the frame using a Fixed joint, to prevent him
from falling off the bike. All riders’ articulations, elbows,
knees, wrists, are modelled using Universal, Hinge, or ball
and socket joints, with limits set on the joints to prevent
the rider doing forbidden moves, and allow him to be ani-
mated by the simulation in a realistic way. All simulation
objects’ size, position and orientations, and joints’ position
and orientation are obtained procedurally, from the ren-
dering meshes. The user has the possibility, through LUA
script, to choose the collision primitive for each object, set
joint types, and modify objects’ sizes, positions and orien-
tations, and joint positions and orientations, masses and
inertia tensors.

An AMotor (angular motor) is used on the rear wheel,
to allow for bike acceleration and braking.

All masses, inertia tensors, and mass parameters are
set experimentally.

The player controls are the direct action on the handle
bar, and the torque applied on the rear wheel.

3.3 Initial Results

All tests and experiments have been carried out using a
Evaluation Panel composed of three regular gamers; these
regular gamers evaluated the game at every stage of de-
velopment and fed back to the main game developer crit-
icisms and comments. To ride a bike, the user has 2 pairs
of controls used to turn left/right or accelerate/decelerate
the bike. The bike is extremely difficult to control.

1. It keeps on falling onto its sides; it is nearly impossi-
ble to control the balance of the bike by direct action
on the handle bar.

2. It keeps on flipping while accelerating or decelerat-
ing; it is difficult to find the right angular motor
parameters (target angular velocity and torque to
achieve acceleration and deceleration).

3. The biker seems very rigid, because the rider is glued
to the bike seat.

4 Improving the simulation

A few improvements to the original models have been
made in order to improve the simulation.

4.1 Indirect action on the handle bar

What the player really wants is to turn left or right; turn-
ing left and right is not achieved by direct action on the
handlebar; instead, as described above, it is the angle
the bike is making with the ground, that makes the bike
turn, and this angle is obtained through action on the
handlebar. Hence, as an experiment, let us interpret the
left /right player control of the bike as a target roll angle
the bike is to make with the ground; and let the game
engine evaluate the appropriate action to apply on the
handle bar in order to achieve this target angle. As a first
consideration, we can state that the action on the handle
bar is dependant on the bike’s velocity; a rider does not
turn the handle bar as much while riding at high speed
than while riding at low speed. We also state that the
action of the handle bar is dependant on the difference
between the current bike roll angle and the target bike
roll angle, and also dependant on the current bike roll an-
gle. As an experiment, we test with the following rotation
for the handle bar:

Cox (A, — A +C,, x A,
_ G4 @

With A, the current bike roll angle, A; the target bike
roll angle (mapped as left/right control of player), v the
linear velocity, and Cg and C,, two parameters to be de-
termined experimentally.

Ry

After a few tests to find appropriate values for C; and
C.,,, this proved very successful; the bike does not fall onto
its sides anymore and balance is maintained. However, it
is still difficult for the player to fully control the direction
of the bike.

4.2 Adding a force

As an experiment, instead of using an angular motor for
the rear wheel, a force is applied directly on the bike frame.
Applying directly a force is appropriate because it conveys
the feeling of a continuous thrust one can have while rid-
ing a motocross bike. This feeling of continuous thrust is
in practice mainly due to the loose traction between the
bike wheels and the ground.

This proved to be very successful; the bike was not
flipping anymore at acceleration and deceleration. Beside,
by changing the position where this force is applied, it is
possible to get the front wheel to rise while accelerating
hard, and the rear wheel to rise while decelerating hard.

4.3 Adding torques

To make the bike even more stable, as an experiment,
the bike frame is attached to the static environment using
an angular motor. For the three bike axes, target angles
are set for the frame in relation to the static environment
(ground), and the angular motor applies torques to the
frame in order to achieve those target angles. Spring and
damping can also be adjusted on this joint, in order to ob-
tain the right joint behavior. The ODE AMotor joint had
to be modified, in order to allow an object to be attached
to the static environment, and to accept angles outside
the {—m, 7} range. This proved extremely successful; the
bike was a lot more stable, and it was easier to turn. This
also allowed for one extra control, lean forward or back-
ward (biker weight on the front or on the rear of the bike).
More details about AMotors can be found in the ODE use
guide [8]:

4.4 Detaching the rider from the motor-
bike

A new joint called linear motor, has been implemented.
It is very similar to the angular motor, but works with
forces and translations instead of torques and rotations.
The rider trunk is attached to the bike frame using this
joint, and the fixed joint is removed. This proved very
successful. The rider with his body weight is now able to
absorb part of the shocks, just as a real rider would. The
simulation looks more realistic, and the bike is more sta-
ble. More information about creating new joints in ODE
can be found in this paper [7].

4.5 Simulating trail

As seen above, because a Hinge2 joint has been used, there
is no more trail to force the front wheel in alignment with
the ground. A trail can be simulated by forcing the front
wheel in the direction of the moving ground. The rotation
for the handle bar now becomes:

CCex(Ac—A) +Crx A+ Cy % Ay
v

Ry, 3)
With A, the current bike roll angle, A; the target bike
roll angle (mapped as left /right control of player), A, the
current bike yawl angle, or difference angle between the
forward direction of the bike frame, and the velocity vec-
tor of the bike. v is the linear velocity. Cy, C,, and C, are
three parameters to be determined experimentally. This
also proved to be successful as it made the bike even more
stable.

5 Conclusion

Simulating a motorbike is more difficult than simulating a
car, because a lot more bodies, joints and mechanical phe-
nomena are involved. We believe that this is the first time
such a motocross simulator has been successfully created.

Simple simulation models can make a bike realistic but
makes the game totally unplayable. Modifying the models,
to make the game playable may involve introducing con-
trols and objects which are unrealistic. The work is not
finished yet, but so far the simulated bike seems realistic,
and the game seems fairly easy and fun to play.

The game is slightly harder to play than most arcade
motocross games, but making the game easier would mean
adding more unrealistic controls, cutting on the simula-
tion, and the game would loose some of its appeal. It
is also a choice to have the game appeal to a large pub-
lic, and not only to young children. Current and future
work involve fine tuning the simulation, and creating more
bikes.

We [3] have also trained artificial neural networks using
backpropagation and evolutionary algorithms to learn to
ride such bikes. Future work will also investigate whether
other computational intelligence techniques can be used
for this purpose.

References

[1] http://www.carsim.com/. Technical report, Mechan-
ical Simulation, 2005.

[2] C. Anthony and J. Davis. http://www.msgroup.org.
Technical report, The Master Strategy Group, 2005.

[3] B. Chaperot and C. Fyfe. Motocross and artificial
neural networks. In Game Design And Technology
Workshop 2005. TBA, 2005.

Contact
with
ground

Centrifugal force

Steering axs at
ground level

Figure 1: The three main forces acting on the bike. Rake angle and trail are used to make the bike stable, figure used
with permission of The Master Strategy Group http://www.msgroup.org

Figure 2: The bike has seen in the game and its associated collision objects used for the simulation

[4] David Lam. http://www.tokamakphysics.com/. [9] Various. http://ps2.ign.com/articles/445/445638p1.html.

Technical report, 2005. Technical report, IGN, 2003.

[5] E. Laptev. http://www.oxforddynamics.co.uk/. [10] Various. http://thqg.com/game.asp?1052—46045.
Technical report, Oxforddynamics, 2005. Technical report, Rainbow Studios, 2003.

[6] R. Smith. http://www.ode.org/. Technical report, [11] Various. http://www.havok.com/. Technical report,
2005. Havok, 2005.

[7] R. Smith. http://www.ode.org/joints.pdf. Technical [12] Various. http://www.novodex.com/. Technical re-
report, 2005. port, AGEIA Technologies, 2005.

[8] R. Smith. http://www.ode.org/ode-latest- [13] Various. http://www.renderware.com/physics.asp/.
userguide.html. Technical report, 2005. Technical report, Criterion, 2005.

